Skip to main content
Top
Published in: Diagnostic Pathology 1/2018

Open Access 01-12-2018 | Research

Consistency of tumor and immune cell programmed cell death ligand-1 expression within and between tumor blocks using the VENTANA SP263 assay

Authors: Paul Scorer, Marietta Scott, Nicola Lawson, Marianne J. Ratcliffe, Craig Barker, Marlon C. Rebelatto, Jill Walker

Published in: Diagnostic Pathology | Issue 1/2018

Login to get access

Abstract

Background

Several anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) therapies have shown encouraging safety and clinical activity in a variety of tumor types. A potential role for PD-L1 testing in identifying patients that are more likely to respond to treatment is emerging. PD-L1 expression in clinical practice is determined by testing one tumor section per patient. Therefore, it is critical to understand the impact of tissue sampling variability on patients’ PD-L1 classification.

Methods

Resected non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC) and urothelial carcinoma (UC) tissue samples (five samples per tumor type) were obtained from commercial sources and two tumor blocks were taken from each. Three sections from each block (~ 100 μm apart) were stained using the VENTANA PD-L1 (SP263) assay, and scored based on the percentage of PD-L1-staining tumor cells (TCs) or tumor-infiltrating immune cells (ICs) present. Each section was categorized as PD-L1 high or low/negative using a variety of cut-off values, and intra-block and intra-case (between blocks of the same tumor) concordance (overall percentage agreement [OPA]) were evaluated. An additional 200 commercial NSCLC samples were also analyzed, and intra-block concordance determined by scoring two sections per sample (≥70 μm apart).

Results

Concordance in TC PD-L1 classification was high at all applied cut-offs. Intra-block and intra-case OPA for the 15 NSCLC, HNSCC or UC samples were 100% and 80–100%, respectively, across all cut-offs; intra-block OPA for the 200 NSCLC samples was 91.0–98.5% across all cut-offs. IC PD-L1 classification was less consistent; intra-block and intra-case OPA for the 15 NSCLC, HNSCC or UC samples ranged between 70 and 100% and between 60 and 100%, respectively, with similar observations in the intra-block analysis of the 200 NSCLC samples.

Conclusions

These results show the reproducibility of TC PD-L1 classification across the depth of the tumor using the VENTANA PD-L1 (SP263) assay. Practically, this means that treatment decisions based on TC PD-L1 classification can be made confidently, following analysis of one tumor section. Although more variable than TC staining, consistent IC PD-L1 classification was also observed within and between blocks and across cut-offs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.CrossRefPubMed Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.CrossRefPubMed
4.
go back to reference Powles T, O’Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3:e172411.CrossRefPubMedPubMedCentral Powles T, O’Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3:e172411.CrossRefPubMedPubMedCentral
5.
go back to reference Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMed Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMed
6.
go back to reference Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.CrossRefPubMed Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.CrossRefPubMed
7.
go back to reference Larkins E, Blumenthal GM, Yuan W, He K, Sridhara R, Subramaniam S, et al. FDA approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist. 2017;22:873–8.CrossRefPubMedPubMedCentral Larkins E, Blumenthal GM, Yuan W, He K, Sridhara R, Subramaniam S, et al. FDA approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist. 2017;22:873–8.CrossRefPubMedPubMedCentral
8.
go back to reference Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRefPubMedPubMedCentral Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRefPubMedPubMedCentral
9.
go back to reference Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedPubMedCentral Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedPubMedCentral
10.
go back to reference Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.CrossRefPubMedPubMedCentral Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.CrossRefPubMedPubMedCentral
11.
go back to reference Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–22.CrossRefPubMed Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–22.CrossRefPubMed
12.
go back to reference Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.CrossRefPubMedPubMedCentral Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.CrossRefPubMedPubMedCentral
13.
go back to reference Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMed Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMed
14.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.CrossRefPubMed Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.CrossRefPubMed
15.
go back to reference Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.CrossRefPubMedPubMedCentral Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.CrossRefPubMedPubMedCentral
16.
go back to reference Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.CrossRefPubMedPubMedCentral Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.CrossRefPubMedPubMedCentral
17.
go back to reference Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35:1542–9.CrossRefPubMedPubMedCentral Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35:1542–9.CrossRefPubMedPubMedCentral
18.
go back to reference Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838–45.CrossRefPubMed Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838–45.CrossRefPubMed
23.
go back to reference Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL, et al. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol. 2017;30:340–9.CrossRefPubMed Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL, et al. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol. 2017;30:340–9.CrossRefPubMed
29.
go back to reference Ratcliffe MJ, Sharpe A, Midha A, Barker C, Scott M, Scorer P, et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cut-offs in non-small cell lung cancer. Clin Cancer Res. 2017;23:3585–91.CrossRefPubMed Ratcliffe MJ, Sharpe A, Midha A, Barker C, Scott M, Scorer P, et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cut-offs in non-small cell lung cancer. Clin Cancer Res. 2017;23:3585–91.CrossRefPubMed
30.
go back to reference Rebelatto MC, Midha A, Mistry A, Sabalos C, Schechter N, Li X, et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn Pathol. 2016;11:95.CrossRefPubMedPubMedCentral Rebelatto MC, Midha A, Mistry A, Sabalos C, Schechter N, Li X, et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn Pathol. 2016;11:95.CrossRefPubMedPubMedCentral
32.
go back to reference Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–26.CrossRefPubMedPubMedCentral Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–26.CrossRefPubMedPubMedCentral
33.
go back to reference Cohen E, Harrington K, Le Tourneau C, Dinis J, Licitra L, Ahn M-J, et al. Pembrolizumab vs standard of care for recurrent or metastatic head and neck squamous cell carcinoma: Phase 3 KEYNOTE-040 trial. Oral presentation at the European Society for Medical Oncology (ESMO) Annual Meeting, Madrid, Spain, September 8–12, 2017 (Abstr. LBA45). Cohen E, Harrington K, Le Tourneau C, Dinis J, Licitra L, Ahn M-J, et al. Pembrolizumab vs standard of care for recurrent or metastatic head and neck squamous cell carcinoma: Phase 3 KEYNOTE-040 trial. Oral presentation at the European Society for Medical Oncology (ESMO) Annual Meeting, Madrid, Spain, September 8–12, 2017 (Abstr. LBA45).
35.
go back to reference Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13.CrossRef Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13.CrossRef
36.
go back to reference Scott M, Ratcliffe MJ, Sharpe A, Barker C, Scorer P, Rebelatto M, et al. Concordance of tumor and immune cell staining with Ventana SP263, Dako 28-8, Dako 22C3 and Ventana SP142 PD-L1 immunohistochemistry assays in NSCLC patient samples. Poster presentation at the ASCO-SITC Clinical Immuno-Oncology Symposium, Orlando, FL, USA, February 23–25, 2017. Scott M, Ratcliffe MJ, Sharpe A, Barker C, Scorer P, Rebelatto M, et al. Concordance of tumor and immune cell staining with Ventana SP263, Dako 28-8, Dako 22C3 and Ventana SP142 PD-L1 immunohistochemistry assays in NSCLC patient samples. Poster presentation at the ASCO-SITC Clinical Immuno-Oncology Symposium, Orlando, FL, USA, February 23–25, 2017.
37.
go back to reference Scheel AH, Dietel M, Heukamp LC, Johrens K, Kirchner T, Reu S, et al. Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol. 2016;29:1165–72.CrossRefPubMed Scheel AH, Dietel M, Heukamp LC, Johrens K, Kirchner T, Reu S, et al. Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol. 2016;29:1165–72.CrossRefPubMed
38.
go back to reference Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34:3119–25.CrossRefPubMedPubMedCentral Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34:3119–25.CrossRefPubMedPubMedCentral
39.
go back to reference Ilie M, Long-Mira E, Bence C, Butori C, Lassalle S, Bouhlel L, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016;27:147–53.CrossRefPubMed Ilie M, Long-Mira E, Bence C, Butori C, Lassalle S, Bouhlel L, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol. 2016;27:147–53.CrossRefPubMed
40.
go back to reference Skov BG, Skov T. Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol. 2017;25:453–9.CrossRefPubMed Skov BG, Skov T. Paired comparison of PD-L1 expression on cytologic and histologic specimens from malignancies in the lung assessed with PD-L1 IHC 28-8pharmDx and PD-L1 IHC 22C3pharmDx. Appl Immunohistochem Mol Morphol. 2017;25:453–9.CrossRefPubMed
41.
go back to reference Heymann JJ, Bulman WA, Swinarski D, Pagan CA, Crapanzano JP, Haghighi M, et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer. 2017;125:896–907. Heymann JJ, Bulman WA, Swinarski D, Pagan CA, Crapanzano JP, Haghighi M, et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer. 2017;125:896–907.
42.
go back to reference Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12:208–22.CrossRefPubMed Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12:208–22.CrossRefPubMed
43.
go back to reference Scott M, Ratcliffe MJ, Sharpe A, Barker C, Scorer P, Rebelatto M, et al. Concordance of tumor cell (TC) and immune cell (IC) staining with Ventana SP142, Ventana SP263, Dako 28–8 and Dako 22C3 PD-L1 IHC tests in NSCLC patient samples. J Clin Oncol. 2017;35(15_suppl):e14503.CrossRef Scott M, Ratcliffe MJ, Sharpe A, Barker C, Scorer P, Rebelatto M, et al. Concordance of tumor cell (TC) and immune cell (IC) staining with Ventana SP142, Ventana SP263, Dako 28–8 and Dako 22C3 PD-L1 IHC tests in NSCLC patient samples. J Clin Oncol. 2017;35(15_suppl):e14503.CrossRef
Metadata
Title
Consistency of tumor and immune cell programmed cell death ligand-1 expression within and between tumor blocks using the VENTANA SP263 assay
Authors
Paul Scorer
Marietta Scott
Nicola Lawson
Marianne J. Ratcliffe
Craig Barker
Marlon C. Rebelatto
Jill Walker
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2018
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-018-0725-9

Other articles of this Issue 1/2018

Diagnostic Pathology 1/2018 Go to the issue