Skip to main content
Top
Published in: Diagnostic Pathology 1/2018

Open Access 01-12-2018 | Research

Clinicopathological features and EBV infection status of lymphoma in children and adolescents in South China: a retrospective study of 662 cases

Authors: Changfei Qin, Yuhua Huang, Yanfen Feng, Min Li, Na Guo, Huilan Rao

Published in: Diagnostic Pathology | Issue 1/2018

Login to get access

Abstract

Background

The clinicopathological features and Epstein-Barr virus (EBV) infection status of lymphoma in children and adolescents in South China is under-researched. South China is a well-known high-incidence area of EBV-associated nasopharyngeal carcinoma.

Methods

A cohort of 662 consecutive children and adolescents’ lymphomas was retrospectively analyzed and Epstein-Barr virus encoded RNAs (EBERs) in situ hybridization was performed to detect the EBV infection.

Results

The majority (501/662, 75.7%) of lymphomas in children and adolescents was Non-Hodgkin lymphoma (NHL). One hundred sixty one cases (24.3%) were Hodgkin lymphoma (HL). Of the NHL, precursor cell lymphoma, mature B-cell lymphoma and peripheral T/NK-cell lymphoma accounted for 32.0%, 41.1% and 26.9% respectively. The five common subtypes were lymphoblastic lymphoma (32.0%), Burkitt lymphoma (BL) (21.0%), anaplastic large-cell lymphoma (ALCL) (14.2%), diffuse large B-cell lymphoma (DLBCL) (13.8%) and extranodal NK/T-cell lymphoma, nasal type (ENKTCL) (6.2%). EBV infection was detected in 58.9% classical Hodgkin lymphomas (CHLs), 21.4% mature B-cell lymphomas and 52.4% peripheral T/NK-cell lymphomas. Moreover, EBV was associated with high grade NHL including ENKTCL (100.0%), BL (30.5%) and DLBCL (17.6%).

Conclusion

The high proportion of peripheral T/NK-cell lymphomas in children and adolescents in South China are presented in this study and compared to western countries due to the high percentage of ENKTCL. ENKTCL is firmly associated with EBV infection, while more than half of HL, a portion of BL and DLBCL are related to EBV infection. This study conclusively demonstrates that EBV infection is more prevalent in children and adolescents with lymphomas in South China compared to western countries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Linet MS, Brown LM, Mbulaiteye SM, et al. International long-term trends and recent patterns in the incidence of leukemias and lymphomas among children and adolescents ages 0-19 years. Int J Cancer. 2016;138:1862–74.CrossRefPubMed Linet MS, Brown LM, Mbulaiteye SM, et al. International long-term trends and recent patterns in the incidence of leukemias and lymphomas among children and adolescents ages 0-19 years. Int J Cancer. 2016;138:1862–74.CrossRefPubMed
2.
go back to reference Yang QP, Zhang WY, Yu JB, et al. Subtype distribution of lymphomas in Southwest China: analysis of 6,382 cases using WHO classification in a single institution. Diagn Pathol. 2011;6:77.CrossRefPubMedPubMedCentral Yang QP, Zhang WY, Yu JB, et al. Subtype distribution of lymphomas in Southwest China: analysis of 6,382 cases using WHO classification in a single institution. Diagn Pathol. 2011;6:77.CrossRefPubMedPubMedCentral
3.
go back to reference Castellino SM, Geiger AM, Mertens AC, et al. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the childhood cancer survivor study. Blood. 2011;117:1806–16.CrossRefPubMedPubMedCentral Castellino SM, Geiger AM, Mertens AC, et al. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the childhood cancer survivor study. Blood. 2011;117:1806–16.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Sherief LM, Elsafy UR, Abdelkhalek ER, et al. Disease patterns of pediatric non-Hodgkin lymphoma: a study from a developing area in Egypt. Mol Clin Oncol. 2015;3:139–44.CrossRefPubMed Sherief LM, Elsafy UR, Abdelkhalek ER, et al. Disease patterns of pediatric non-Hodgkin lymphoma: a study from a developing area in Egypt. Mol Clin Oncol. 2015;3:139–44.CrossRefPubMed
6.
go back to reference Allen CE, Kelly KM, Bollard CM. Pediatric lymphomas and Histiocytic disorders of childhood. Pediatr Clin N Am. 2015;62:139–65.CrossRef Allen CE, Kelly KM, Bollard CM. Pediatric lymphomas and Histiocytic disorders of childhood. Pediatr Clin N Am. 2015;62:139–65.CrossRef
7.
go back to reference Sandlund JT, Martin MG. Non-Hodgkin lymphoma across the pediatric and adolescent and young adult age spectrum.Hematology am soc Hematol Educ program. Hematology Am Soc Hematol Educ Program. 2016;2016:589–97.PubMed Sandlund JT, Martin MG. Non-Hodgkin lymphoma across the pediatric and adolescent and young adult age spectrum.Hematology am soc Hematol Educ program. Hematology Am Soc Hematol Educ Program. 2016;2016:589–97.PubMed
8.
go back to reference Dojcinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117:4726–35.CrossRefPubMedPubMedCentral Dojcinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117:4726–35.CrossRefPubMedPubMedCentral
10.
go back to reference Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.CrossRefPubMed Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.CrossRefPubMed
11.
go back to reference Swerdlow SH, Campo E, Harris NL, et al. WHO classification of Tumours of Haematopoietic and lymphoid tissues (IARC WHO classification of Tumours) revised 4th edition. Lyon: IARC Press; 2017. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of Tumours of Haematopoietic and lymphoid tissues (IARC WHO classification of Tumours) revised 4th edition. Lyon: IARC Press; 2017.
13.
go back to reference Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.CrossRefPubMed Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.CrossRefPubMed
14.
go back to reference Bigenwald C, Galimard J-E, Quero L, et al. Hodgkin lymphoma in adolescent and young adults: insights from an adult tertiary single-center cohort of 349 patients. Oncotarget. 2017;8:80073–82.CrossRefPubMedPubMedCentral Bigenwald C, Galimard J-E, Quero L, et al. Hodgkin lymphoma in adolescent and young adults: insights from an adult tertiary single-center cohort of 349 patients. Oncotarget. 2017;8:80073–82.CrossRefPubMedPubMedCentral
15.
go back to reference Ambrosio MR, Rocca BJ, Barone A, et al. Primary anorectal Hodgkin lymphoma: report of a case and review of the literature. Hum Pathol. 2014;45:648–52.CrossRefPubMed Ambrosio MR, Rocca BJ, Barone A, et al. Primary anorectal Hodgkin lymphoma: report of a case and review of the literature. Hum Pathol. 2014;45:648–52.CrossRefPubMed
16.
go back to reference Minard Colin V, Brugières L, Reiter A, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33:2963–74.CrossRefPubMedPubMedCentral Minard Colin V, Brugières L, Reiter A, et al. Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33:2963–74.CrossRefPubMedPubMedCentral
17.
go back to reference Miles RR, Arnold S, Cairo MS. Risk factors and treatment of childhood and adolescent Burkitt lymphoma/leukaemia. Br J Haematol. 2012;156:730–43.CrossRefPubMed Miles RR, Arnold S, Cairo MS. Risk factors and treatment of childhood and adolescent Burkitt lymphoma/leukaemia. Br J Haematol. 2012;156:730–43.CrossRefPubMed
18.
go back to reference Han JY, Suh JK, Lee SW, et al. Clinical characteristics and treatment outcomes of children with anaplastic large cell lymphoma: a single center experience. Blood Res. 2014;49:246–52.CrossRefPubMedPubMedCentral Han JY, Suh JK, Lee SW, et al. Clinical characteristics and treatment outcomes of children with anaplastic large cell lymphoma: a single center experience. Blood Res. 2014;49:246–52.CrossRefPubMedPubMedCentral
19.
go back to reference Anonymous. The world health organization classification of malignant lymphomas in Japan: incidence of recently recognized entities. Lymphoma study Group of Japanese Pathologists. Pathol Int. 2000;50:696–702.CrossRef Anonymous. The world health organization classification of malignant lymphomas in Japan: incidence of recently recognized entities. Lymphoma study Group of Japanese Pathologists. Pathol Int. 2000;50:696–702.CrossRef
20.
go back to reference Pillai V, Tallarico M, Bishop MR, et al. Mature T- and NK-cell non-Hodgkin lymphoma in children and young adolescents. Br J Haematol. 2016;173:573–81.CrossRefPubMed Pillai V, Tallarico M, Bishop MR, et al. Mature T- and NK-cell non-Hodgkin lymphoma in children and young adolescents. Br J Haematol. 2016;173:573–81.CrossRefPubMed
21.
go back to reference Quintanilla-Martinez L, Ridaura C, Nagl F, et al. Hydroa vacciniforme-like lymphoma: a chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood. 2013;122(18):3101–10.CrossRefPubMed Quintanilla-Martinez L, Ridaura C, Nagl F, et al. Hydroa vacciniforme-like lymphoma: a chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood. 2013;122(18):3101–10.CrossRefPubMed
22.
go back to reference Karube K, Campo E. MYC alterations in diffuse large B-cell lymphomas. Semin Hematol. 2015;52:97–106.CrossRefPubMed Karube K, Campo E. MYC alterations in diffuse large B-cell lymphomas. Semin Hematol. 2015;52:97–106.CrossRefPubMed
23.
go back to reference Swerdlow SH. Diagnosis of ‘double hit’ diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. Hematology Am Soc Hematol Educ Program. 2014;2014:90–9.PubMed Swerdlow SH. Diagnosis of ‘double hit’ diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. Hematology Am Soc Hematol Educ Program. 2014;2014:90–9.PubMed
24.
go back to reference Oschlies I, Burkhardt B, Salaverria I, et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96:262–8.CrossRefPubMed Oschlies I, Burkhardt B, Salaverria I, et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica. 2011;96:262–8.CrossRefPubMed
25.
go back to reference Armstrong AA, Alexander FE, Paes RP, etal. Association of Epstein-Barr Virus with pediatric hodgkin' disease. AM J Pathol. 1993;142(6):1683–8. Armstrong AA, Alexander FE, Paes RP, etal. Association of Epstein-Barr Virus with pediatric hodgkin' disease. AM J Pathol. 1993;142(6):1683–8.
26.
go back to reference Lee JH, Kim Y, Choi JW, et al. Prevalence and prognostic significance of Epstein-Barr virus infection in classical Hodgkin'slymphoma: a meta-analysis. Arch Med Res. 2014;45:417–31.CrossRefPubMed Lee JH, Kim Y, Choi JW, et al. Prevalence and prognostic significance of Epstein-Barr virus infection in classical Hodgkin'slymphoma: a meta-analysis. Arch Med Res. 2014;45:417–31.CrossRefPubMed
27.
go back to reference Huppmann AR, Nicolae A, Slack GW, et al. EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol. 2014;38:316–24.CrossRefPubMedPubMedCentral Huppmann AR, Nicolae A, Slack GW, et al. EBV may be expressed in the LP cells of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) in both children and adults. Am J Surg Pathol. 2014;38:316–24.CrossRefPubMedPubMedCentral
29.
go back to reference Chiang AK, Chan AC, Srivastava G, et al. Nasal T/natural killer (NK) -cell lymphomas are derived from Epstein-Barr virus-infected cytotoxic lymphocytes of both NK- and T-cell lineage. Int J Cancer. 1997;73:332–8.CrossRefPubMed Chiang AK, Chan AC, Srivastava G, et al. Nasal T/natural killer (NK) -cell lymphomas are derived from Epstein-Barr virus-infected cytotoxic lymphocytes of both NK- and T-cell lineage. Int J Cancer. 1997;73:332–8.CrossRefPubMed
30.
go back to reference Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17:1240–7.CrossRefPubMed Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17:1240–7.CrossRefPubMed
32.
go back to reference Mundo L, Ambrosio MR, Picciolini M, et al. Unveiling another missing piece in EBV-driven Lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative Burkitt lymphoma cases. Front Microbiol. 2017;8:229.CrossRefPubMedPubMedCentral Mundo L, Ambrosio MR, Picciolini M, et al. Unveiling another missing piece in EBV-driven Lymphomagenesis: EBV-encoded MicroRNAs expression in EBER-negative Burkitt lymphoma cases. Front Microbiol. 2017;8:229.CrossRefPubMedPubMedCentral
33.
go back to reference Ambrosio MR, Lo Bello G, Amato T, et al. The cell of origin of Burkitt lymphoma: germinal centre or not germinal centre? Histopathology. 2016;69:885–6.CrossRefPubMed Ambrosio MR, Lo Bello G, Amato T, et al. The cell of origin of Burkitt lymphoma: germinal centre or not germinal centre? Histopathology. 2016;69:885–6.CrossRefPubMed
34.
35.
go back to reference Amato T, Abate F, Piccaluga P, et al. Clonality analysis of immunoglobulin gene rearrangement by next-generation sequencing in endemic Burkitt lymphoma suggests antigen drive activation of BCR as opposed to sporadic Burkitt lymphoma. Am J Clin Pathol. 2016;145:116–27.CrossRefPubMed Amato T, Abate F, Piccaluga P, et al. Clonality analysis of immunoglobulin gene rearrangement by next-generation sequencing in endemic Burkitt lymphoma suggests antigen drive activation of BCR as opposed to sporadic Burkitt lymphoma. Am J Clin Pathol. 2016;145:116–27.CrossRefPubMed
36.
37.
go back to reference Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156:744–56.CrossRefPubMed Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156:744–56.CrossRefPubMed
38.
go back to reference Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126:863–72.CrossRefPubMedPubMedCentral Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126:863–72.CrossRefPubMedPubMedCentral
39.
go back to reference Cohen M, Narbaitz M, Metrebian F, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma association is not only restricted to elderly patients. Int J Cancer. 2014;135:2816–24.CrossRefPubMed Cohen M, Narbaitz M, Metrebian F, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma association is not only restricted to elderly patients. Int J Cancer. 2014;135:2816–24.CrossRefPubMed
Metadata
Title
Clinicopathological features and EBV infection status of lymphoma in children and adolescents in South China: a retrospective study of 662 cases
Authors
Changfei Qin
Yuhua Huang
Yanfen Feng
Min Li
Na Guo
Huilan Rao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2018
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-018-0693-0

Other articles of this Issue 1/2018

Diagnostic Pathology 1/2018 Go to the issue