Skip to main content
Top
Published in: Diagnostic Pathology 1/2017

Open Access 01-12-2017 | Research

Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family

Authors: Muhammad Ajmal, Asif Mir, Muhammad Shoaib, Salman Akbar Malik, Muhammad Nasir

Published in: Diagnostic Pathology | Issue 1/2017

Login to get access

Abstract

Background

The dimerization efficiency of FGFR3 transmembrane domain plays a critical role in the formation of a normal skeleton through the negative regulation of bone development. Recently, gain-of-function mutations in the transmembrane domain of FGFR3 has been described associated with an aberrant negative regulation, leading to the development of achondroplasia-group disorders, including achondroplasia (ACH), hypochondroplasia (HCH) and thanatophoric dysplasia (TD). Here, we describe a non-consanguineous Pakistani family with achondroplasia to explain hereditary basis of the disease.

Methods

PCR-based linkage analysis using microsatellite markers was employed to localize the disease gene. Gene specific intronic primers were used to amplify the genomic DNA from all affected as well as phenotypically healthy individuals. Amplified PCR products were then subjected to Sanger sequencing and RFLP analysis to identify a potentially pathogenic mutation. The impact of identified mutation on FGFR3 protein’s structure and stability was highlighted through different bioinformatics tools.

Results

Genetic screening of the family revealed a previously reported heterozygous c.1138 G > A (p.G380R) mutation in the coding exon 8 of FGFR3 gene. Identified genetic variation was confirmed in all affected individuals while healthy individuals and controls were found genotypically normal. The results were further validated by RFLP analysis as c.1138 G > A substitution generates a unique recognition site for SfcI endonuclease. Following SfcI digestion, the electrophoretic pattern of three bands/DNA fragments for each patient is indicative of heterozygous status of the disease allele. In silico studies of the mutant FGFR3 protein predicted to adversely affect the stability of FGFR3 protein.

Conclusions

Mutation in the transmembrane domain may adversely affect the dimerization efficiency and overall stability of the FGFR3, leading to a constitutively active protein. As a result, an uncontrolled intracellular signaling or negative bone growth regulation leads to achondroplasia. Our findings support the fact that p.G380R is a common mutation among diverse population of the world and like other countries, can be used as a molecular diagnosis marker for achondroplasia in Pakistan.
Appendix
Available only for authorised users
Literature
1.
go back to reference Trujillo-Tiebas MJ, Fenollar-Cortes M, Lorda-Sanchez I, Diaz-Recasens J, Carrillo Redondo A, Ramos-Corrales C, Ayuso C. Prenatal diagnosis of skeletal dysplasia due to FGFR3 gene mutations: a 9-year experience : prenatal diagnosis in FGFR3 gene. J Assist Reprod Genet. 2009;26:455–60.CrossRefPubMedPubMedCentral Trujillo-Tiebas MJ, Fenollar-Cortes M, Lorda-Sanchez I, Diaz-Recasens J, Carrillo Redondo A, Ramos-Corrales C, Ayuso C. Prenatal diagnosis of skeletal dysplasia due to FGFR3 gene mutations: a 9-year experience : prenatal diagnosis in FGFR3 gene. J Assist Reprod Genet. 2009;26:455–60.CrossRefPubMedPubMedCentral
3.
go back to reference Savarirayan R, Rimoin DL. The skeletal dysplasias. Best Pract Res Clin Endocrinol Metab. 2002;16:547–60.CrossRefPubMed Savarirayan R, Rimoin DL. The skeletal dysplasias. Best Pract Res Clin Endocrinol Metab. 2002;16:547–60.CrossRefPubMed
4.
go back to reference Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–42.CrossRefPubMed Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–42.CrossRefPubMed
5.
go back to reference Panda A, Gamanagatti S, Jana M, Gupta AK. Skeletal dysplasias: a radiographic approach and review of common non-lethal skeletal dysplasias. World J Radiol. 2014;6:808–25.CrossRefPubMedPubMedCentral Panda A, Gamanagatti S, Jana M, Gupta AK. Skeletal dysplasias: a radiographic approach and review of common non-lethal skeletal dysplasias. World J Radiol. 2014;6:808–25.CrossRefPubMedPubMedCentral
6.
go back to reference Ho NC, Guarnieri M, Brant LJ, Park SS, Sun B, North M, Francomano CA, Carson BS. Living with achondroplasia: quality of life evaluation following cervico-medullary decompression. Am J Med Genet A. 2004;131:163–7.CrossRefPubMed Ho NC, Guarnieri M, Brant LJ, Park SS, Sun B, North M, Francomano CA, Carson BS. Living with achondroplasia: quality of life evaluation following cervico-medullary decompression. Am J Med Genet A. 2004;131:163–7.CrossRefPubMed
7.
go back to reference Naidu S, Murphy M, Moser HW, Rett A. Rett syndrome--natural history in 70 cases. Am J Med Genet Suppl. 1986;1:61–72.CrossRefPubMed Naidu S, Murphy M, Moser HW, Rett A. Rett syndrome--natural history in 70 cases. Am J Med Genet Suppl. 1986;1:61–72.CrossRefPubMed
8.
go back to reference Carter EM, Davis JG, Raggio CL. Advances in understanding etiology of achondroplasia and review of management. Curr Opin Pediatr. 2007;19:32–7.CrossRefPubMed Carter EM, Davis JG, Raggio CL. Advances in understanding etiology of achondroplasia and review of management. Curr Opin Pediatr. 2007;19:32–7.CrossRefPubMed
10.
11.
go back to reference Kelleher FC, O'Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. 2013;34:2198–205.CrossRefPubMed Kelleher FC, O'Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. 2013;34:2198–205.CrossRefPubMed
12.
go back to reference Su N, Xu X, Li C, He Q, Zhao L, Li C, Chen S, Luo F, Yi L, Du X, et al. Generation of Fgfr3 conditional knockout mice. Int J Biol Sci. 2010;6:327–32.CrossRefPubMedPubMedCentral Su N, Xu X, Li C, He Q, Zhao L, Li C, Chen S, Luo F, Yi L, Du X, et al. Generation of Fgfr3 conditional knockout mice. Int J Biol Sci. 2010;6:327–32.CrossRefPubMedPubMedCentral
13.
go back to reference Hung CC, Lee CN, Chang CH, Jong YJ, Chen CP, Hsieh WS, Su YN, Lin WL. Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Clin Biochem. 2008;41:162–6.CrossRefPubMed Hung CC, Lee CN, Chang CH, Jong YJ, Chen CP, Hsieh WS, Su YN, Lin WL. Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Clin Biochem. 2008;41:162–6.CrossRefPubMed
14.
go back to reference He X, Xie F, Ren ZR. Rapid detection of G1138A and G1138C mutations of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Genet Test Mol Biomarkers. 2012;16:297–301.CrossRefPubMed He X, Xie F, Ren ZR. Rapid detection of G1138A and G1138C mutations of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Genet Test Mol Biomarkers. 2012;16:297–301.CrossRefPubMed
15.
go back to reference Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371:252–4.CrossRefPubMed Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371:252–4.CrossRefPubMed
16.
17.
go back to reference Toriello HV, Meck JM, Professional P, Guidelines C. Statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10:457–60.CrossRefPubMedPubMedCentral Toriello HV, Meck JM, Professional P, Guidelines C. Statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10:457–60.CrossRefPubMedPubMedCentral
18.
go back to reference Bellus GA, Hefferon TW, Ortiz de Luna RI, Hecht JT, Horton WA, Machado M, Kaitila I, Mclntosh I, Francomano CA. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet. 1995;56:368–73.PubMedPubMedCentral Bellus GA, Hefferon TW, Ortiz de Luna RI, Hecht JT, Horton WA, Machado M, Kaitila I, Mclntosh I, Francomano CA. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet. 1995;56:368–73.PubMedPubMedCentral
19.
go back to reference Xue Y, Sun A, Mekikian PB, Martin J, Rimoin DL, Lachman RS, Wilcox WR. FGFR3 mutation frequency in 324 cases from the international skeletal dysplasia registry. Mol Genet Genomic Med. 2014;2:497–503.CrossRefPubMedPubMedCentral Xue Y, Sun A, Mekikian PB, Martin J, Rimoin DL, Lachman RS, Wilcox WR. FGFR3 mutation frequency in 324 cases from the international skeletal dysplasia registry. Mol Genet Genomic Med. 2014;2:497–503.CrossRefPubMedPubMedCentral
20.
go back to reference Matsui Y, Yasui N, Kimura T, Tsumaki N, Kawabata H, Ochi T. Genotype phenotype correlation in achondroplasia and hypochondroplasia. J Bone Joint Surg Br. 1998;80:1052–6.CrossRefPubMed Matsui Y, Yasui N, Kimura T, Tsumaki N, Kawabata H, Ochi T. Genotype phenotype correlation in achondroplasia and hypochondroplasia. J Bone Joint Surg Br. 1998;80:1052–6.CrossRefPubMed
21.
go back to reference Patil SJ, Banerjee M, Phadke SR, Mittal B. Mutation analysis in Indian children with achondroplasia - utility of molecular diagnosis. Indian J Pediatr. 2009;76:147–9.CrossRefPubMed Patil SJ, Banerjee M, Phadke SR, Mittal B. Mutation analysis in Indian children with achondroplasia - utility of molecular diagnosis. Indian J Pediatr. 2009;76:147–9.CrossRefPubMed
22.
go back to reference Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual+ cold Spring Harbor. New York: Cold Spring Harbor Laboratory Press; 1989. Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual+ cold Spring Harbor. New York: Cold Spring Harbor Laboratory Press; 1989.
23.
go back to reference McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5.CrossRefPubMed McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5.CrossRefPubMed
24.
26.
go back to reference Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics. 2003;50:437–50.CrossRef Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics. 2003;50:437–50.CrossRef
28.
go back to reference Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34:W116–8.CrossRefPubMedPubMedCentral Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34:W116–8.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–10.CrossRefPubMedPubMedCentral Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–10.CrossRefPubMedPubMedCentral
31.
go back to reference Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10:e1003440.CrossRefPubMedPubMedCentral Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10:e1003440.CrossRefPubMedPubMedCentral
32.
go back to reference Stanescu R, Stanescu V, Maroteaux P. Homozygous achondroplasia: morphologic and biochemical study of cartilage. Am J Med Genet. 1990;37:412–21.CrossRefPubMed Stanescu R, Stanescu V, Maroteaux P. Homozygous achondroplasia: morphologic and biochemical study of cartilage. Am J Med Genet. 1990;37:412–21.CrossRefPubMed
33.
go back to reference Peters K, Ornitz D, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol. 1993;155:423–30.CrossRefPubMed Peters K, Ornitz D, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol. 1993;155:423–30.CrossRefPubMed
34.
go back to reference Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev. 2000;21:23–39.PubMed Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev. 2000;21:23–39.PubMed
35.
36.
go back to reference Li E, Hristova K. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adhes Migr. 2010;4:249–54.CrossRef Li E, Hristova K. Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics. Cell Adhes Migr. 2010;4:249–54.CrossRef
37.
go back to reference Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. 2012;33:29–41.CrossRefPubMed Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. 2012;33:29–41.CrossRefPubMed
38.
go back to reference Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84:911–21.CrossRefPubMed Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84:911–21.CrossRefPubMed
39.
go back to reference Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12:390–7.CrossRefPubMed Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12:390–7.CrossRefPubMed
40.
go back to reference Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure. 2013;21:2087–93.CrossRefPubMed Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure. 2013;21:2087–93.CrossRefPubMed
41.
go back to reference Richette P, Bardin T, Stheneur C. Achondroplasia: from genotype to phenotype. Joint Bone Spine. 2008;75:125–30.CrossRefPubMed Richette P, Bardin T, Stheneur C. Achondroplasia: from genotype to phenotype. Joint Bone Spine. 2008;75:125–30.CrossRefPubMed
42.
43.
go back to reference Volynsky PE, Polyansky AA, Fakhrutdinova GN, Bocharov EV, Efremov RG. Role of dimerization efficiency of transmembrane domains in activation of fibroblast growth factor receptor 3. J Am Chem Soc. 2013;135:8105–8.CrossRefPubMed Volynsky PE, Polyansky AA, Fakhrutdinova GN, Bocharov EV, Efremov RG. Role of dimerization efficiency of transmembrane domains in activation of fibroblast growth factor receptor 3. J Am Chem Soc. 2013;135:8105–8.CrossRefPubMed
Metadata
Title
Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family
Authors
Muhammad Ajmal
Asif Mir
Muhammad Shoaib
Salman Akbar Malik
Muhammad Nasir
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2017
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-017-0642-3

Other articles of this Issue 1/2017

Diagnostic Pathology 1/2017 Go to the issue