Skip to main content
Top
Published in: Diagnostic Pathology 1/2017

Open Access 01-12-2017 | Research

HMGA2 immunostaining is a straightforward technique which helps to distinguish pulmonary fat-forming lesions from normal adipose tissue in small biopsies: a retrospective observational study about a series of 13 lung biopsies

Authors: Nicolas Piton, Émilie Angot, Florent Marguet, Jean-Christophe Sabourin

Published in: Diagnostic Pathology | Issue 1/2017

Login to get access

Abstract

Background

A tracheobronchial lesion observed during an endoscopic examination is usually sampled by the pulmonologist and sent to the pathologist for microscopic examination. Adipocytes may be observed in the lamina propria of tracheobronchial biopsies, which may complicate diagnosis of sampled lesions because these adipose cells may be part of the lesion (lipoma or pulmonary hamartoma), but may also be a normal component of the bronchial mucosa. Because endoscopic samples frequently miss their target, adipocytes observed in such biopsies usually lead to uncertainty regarding diagnosis. Both pulmonary hamartomas and lipomas have a high frequency of translocations involving HMGA2, resulting in over expression of the fusion protein. The literature suggests that only 31% of tracheobronchial lipomas are correctly diagnosed on biopsy, sometimes leading to unnecessary aggressive surgical resection.

Methods

We performed retrospective study of tracheo-bronchial biopsies containing adipocytes using HMGA2 immunostaining in order to define their nature and to assess the diagnostic utility of this marker.

Results

In total, 13 lesions biopsied in 12 patients and containing adipocytes were immunostained for HMGA2. Nuclear immunostaining was detected in 7 out of the 13 lesions (54%), allowing us to diagnose a lipoma or hamartoma.

Conclusion

HMGA2 immunostaining is an affordable and straightforward technique for accurate description of biopsies containing adipose cells. When positive, a diagnosis of benign adipose lesion can be made with confidence since well-differentiated liposarcomas have never been described in the tracheobronchial tree. Our work enabled us to diagnose a benign adipose lesion in 54% of cases, above the rate of 31% reported in the literature, based solely on morphological analysis. Overall, HMGA2 immunostaining could help pathologists to provide accurate diagnosis of tracheobronchial adipose lesions, leading to conservative treatment, for the overall benefit of patients.
Literature
1.
go back to reference Muraoka M, Oka T, Akamine S, et al. Endobronchial lipoma: review of 64 cases reported in Japan. Chest. 2003;123:293–6.CrossRefPubMed Muraoka M, Oka T, Akamine S, et al. Endobronchial lipoma: review of 64 cases reported in Japan. Chest. 2003;123:293–6.CrossRefPubMed
2.
go back to reference Nassiri AH, Dutau H, Breen D, et al. A multicenter retrospective study investigating the role of interventional bronchoscopic techniques in the management of endobronchial lipomas. Respir Int Rev Thorac Dis. 2008;75:79–84. Nassiri AH, Dutau H, Breen D, et al. A multicenter retrospective study investigating the role of interventional bronchoscopic techniques in the management of endobronchial lipomas. Respir Int Rev Thorac Dis. 2008;75:79–84.
3.
go back to reference Jensen MS, Petersen AH. Bronchial lipoma. Scand Thorac Cardiovasc Surg. 1970;4:131–4.CrossRef Jensen MS, Petersen AH. Bronchial lipoma. Scand Thorac Cardiovasc Surg. 1970;4:131–4.CrossRef
5.
go back to reference Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumors of the lung, pleura, thymus and heart. 4th ed. 2015. p. 116. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumors of the lung, pleura, thymus and heart. 4th ed. 2015. p. 116.
6.
go back to reference Dal Clin P, Kools P, De Jonge I, et al. Rearrangement of 12q14-15 in pulmonary chondroid hamartoma. Genes Chromosomes Cancer. 1993;8:131–4.CrossRef Dal Clin P, Kools P, De Jonge I, et al. Rearrangement of 12q14-15 in pulmonary chondroid hamartoma. Genes Chromosomes Cancer. 1993;8:131–4.CrossRef
7.
go back to reference von Ahsen I, Rogalla P, Bullerdiek J. Expression patterns of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas. Cancer Genet Cytogenet. 2005;163:68–70.CrossRef von Ahsen I, Rogalla P, Bullerdiek J. Expression patterns of the LPP-HMGA2 fusion transcript in pulmonary chondroid hamartomas. Cancer Genet Cytogenet. 2005;163:68–70.CrossRef
8.
go back to reference Kazmierczak B, Meyer-Bolte K, Tran KH, et al. A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chromosomes Cancer. 1999;26:125–33.CrossRefPubMed Kazmierczak B, Meyer-Bolte K, Tran KH, et al. A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chromosomes Cancer. 1999;26:125–33.CrossRefPubMed
9.
go back to reference Kayser K, Dünwald D, Kazmierczak N, et al. Chromosomal aberrations, profiles of expression of growth-related markers including galectins and environmental hazards in relation to the incidence of chondroid pulmonary hamartomas. Pathol Res Pract. 2003;199:589–98.CrossRefPubMed Kayser K, Dünwald D, Kazmierczak N, et al. Chromosomal aberrations, profiles of expression of growth-related markers including galectins and environmental hazards in relation to the incidence of chondroid pulmonary hamartomas. Pathol Res Pract. 2003;199:589–98.CrossRefPubMed
10.
go back to reference Wang X, Hulshizer RL, Erickson-Johnson MR, et al. Identification of novel HMGA2 fusion sequences in lipoma: evidence that deletion of let-7 miRNA consensus binding site 1 in the HMGA2 3’ UTR is not critical for HMGA2 transcriptional upregulation. Genes Chromosomes Cancer. 2009;48:673–8.CrossRefPubMed Wang X, Hulshizer RL, Erickson-Johnson MR, et al. Identification of novel HMGA2 fusion sequences in lipoma: evidence that deletion of let-7 miRNA consensus binding site 1 in the HMGA2 3’ UTR is not critical for HMGA2 transcriptional upregulation. Genes Chromosomes Cancer. 2009;48:673–8.CrossRefPubMed
11.
go back to reference Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma. Cancer Genet Cytogenet. 2004;150:93–115.CrossRefPubMed Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma. Cancer Genet Cytogenet. 2004;150:93–115.CrossRefPubMed
12.
go back to reference Dreux N, Marty M, Chibon F, et al. Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol. 2010;23:1657–66.CrossRefPubMed Dreux N, Marty M, Chibon F, et al. Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol. 2010;23:1657–66.CrossRefPubMed
13.
go back to reference Lowe JS, Anderson PG. In: Elsevier, editor. Stevens & lowes human histology. 4th ed. 2014. p. 166–78. Lowe JS, Anderson PG. In: Elsevier, editor. Stevens & lowes human histology. 4th ed. 2014. p. 166–78.
14.
go back to reference Zhou X, Benson KF, Ashar HR, et al. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 1995;376:771–4.CrossRefPubMed Zhou X, Benson KF, Ashar HR, et al. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature. 1995;376:771–4.CrossRefPubMed
15.
go back to reference Hirning-Folz U, Wilda M, Rippe V, et al. The expression pattern of the HMGIC gene during development. Genes Chromosomes Cancer. 1998;23:350–7.CrossRefPubMed Hirning-Folz U, Wilda M, Rippe V, et al. The expression pattern of the HMGIC gene during development. Genes Chromosomes Cancer. 1998;23:350–7.CrossRefPubMed
16.
go back to reference Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006;126:503–14.CrossRefPubMed Narita M, Narita M, Krizhanovsky V, et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006;126:503–14.CrossRefPubMed
17.
go back to reference Rogalla P, Drechsler K, Frey G, et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol. 1996;149:775–9.PubMedPubMedCentral Rogalla P, Drechsler K, Frey G, et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol. 1996;149:775–9.PubMedPubMedCentral
18.
go back to reference Boland JM, Fritchie KJ, Erickson-Johnson MR, et al. Endobronchial lipomatous tumors: clinicopathologic analysis of 12 cases with molecular cytogenetic evidence supporting classification as “lipoma”. Am J Surg Pathol. 2013;37:1715–21.CrossRefPubMed Boland JM, Fritchie KJ, Erickson-Johnson MR, et al. Endobronchial lipomatous tumors: clinicopathologic analysis of 12 cases with molecular cytogenetic evidence supporting classification as “lipoma”. Am J Surg Pathol. 2013;37:1715–21.CrossRefPubMed
19.
go back to reference Kazmierczak B, Rosigkeit J, Wanschura S, et al. HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene. 1996;12:515–21.PubMed Kazmierczak B, Rosigkeit J, Wanschura S, et al. HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene. 1996;12:515–21.PubMed
Metadata
Title
HMGA2 immunostaining is a straightforward technique which helps to distinguish pulmonary fat-forming lesions from normal adipose tissue in small biopsies: a retrospective observational study about a series of 13 lung biopsies
Authors
Nicolas Piton
Émilie Angot
Florent Marguet
Jean-Christophe Sabourin
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2017
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-017-0603-x

Other articles of this Issue 1/2017

Diagnostic Pathology 1/2017 Go to the issue