Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Research

Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration

Authors: Cheng Liu, Zhuoan Cheng, Yunman Wang, Xiuqin Dai, Jie Zhang, Dongying Xue

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

It is well established that macrophage infiltration is involved in concanavalin A (conA)-induced liver injury. However, the role of macrophages in conA-induced renal injury remains unknown. The aims of this study were to investigate macrophage infiltration in conA-induced renal injury and determine whether paeoniflorin (PF) could inhibit macrophage infiltration into the kidney.

Methods

BALB/C mice were pre-treated with or without PF 2 h (h) before conA injection. At 8 h after con A injection, all the mice were sacrificed; The liver and kidney histology were studied. The renal CD68 expression was detected by immunohistochemical and real-time PCR analysis. The level of expression of C-X-C chemokine receptor type 3 (CXCR3) was analyzed by western blot, immunohistochemical and real-time PCR. The pathophysiological involvement of CXCR3 in macrophage infiltration were investigated using dual-colour immunofluorescence microscopy.

Results

PF administration significantly reduced the elevated serum levels of alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine (Cr) and the severity of liver and renal damage compared with that in the conA-vehicle group. PF administration inhibited the increase in renal IL1β mRNA expression and concentration. Furthermore, immunohistochemical analysis showed that macrophages secreted CXCR3 in the kidneys of the conA-vehicle mice. Immunofluorescence microscopy demonstrated CXCR3 bound tightly to C-X-C motif ligand 11 (CXCL11) in the kidneys of the conA-vehicle mice and showed that PF treatment could suppress CXCR3/CXCL11 over-activation.

Conclusions

Macrophage infiltration was a notable pathological change in the kidneys of conA-treated mice. PF administration attenuated conA-induced renal damage, at least in part, by inhibiting the over-activated CXCR3/CXCL11 signal axis.
Literature
1.
go back to reference Wahl C, Wegenka UM, Leithauser F, Schirmbeck R, Reimann J. IL-22-Dependent Attenuation of T Cell-Dependent (ConA) Hepatitis in Herpes Virus Entry Mediator Deficiency. J Immunol. 2009;182(8):4521–8.PubMedCrossRef Wahl C, Wegenka UM, Leithauser F, Schirmbeck R, Reimann J. IL-22-Dependent Attenuation of T Cell-Dependent (ConA) Hepatitis in Herpes Virus Entry Mediator Deficiency. J Immunol. 2009;182(8):4521–8.PubMedCrossRef
2.
go back to reference Xu L, Qi J, Zhao P, Liang X, Ju Y, Liu P, et al. T cell immunoglobulin- and mucin-domain-containing molecule-4 attenuates concanavalin A-induced hepatitis by regulating macrophage. J Leukocyte Biol. 2010;88(2):329–36.PubMedCrossRef Xu L, Qi J, Zhao P, Liang X, Ju Y, Liu P, et al. T cell immunoglobulin- and mucin-domain-containing molecule-4 attenuates concanavalin A-induced hepatitis by regulating macrophage. J Leukocyte Biol. 2010;88(2):329–36.PubMedCrossRef
3.
go back to reference Feng D, Mei Y, Wang Y, Zhang B, Wang C, Xu L. Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-κB activation. Immunol Lett. 2008;121(2):127–33.PubMedCrossRef Feng D, Mei Y, Wang Y, Zhang B, Wang C, Xu L. Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-κB activation. Immunol Lett. 2008;121(2):127–33.PubMedCrossRef
4.
go back to reference Nakajima H, Takagi H, Horiguchi N, Toyoda M, Kanda D, Otsuka T, et al. Lack of macrophage migration inhibitory factor protects mice against concanavalin A-induced liver injury. Liver Int. 2006;26(3):346–51.PubMedCrossRef Nakajima H, Takagi H, Horiguchi N, Toyoda M, Kanda D, Otsuka T, et al. Lack of macrophage migration inhibitory factor protects mice against concanavalin A-induced liver injury. Liver Int. 2006;26(3):346–51.PubMedCrossRef
5.
go back to reference Wu YM, Jin R, Yang L, Zhang J, Yang Q, Guo YY, et al. Phosphatidylinositol 3 kinase/protein kinase B is responsible for the protection of paeoniflorin upon H2O2-induced neural progenitor cell injury. Neuroscience. 2013;240:54–62.PubMedCrossRef Wu YM, Jin R, Yang L, Zhang J, Yang Q, Guo YY, et al. Phosphatidylinositol 3 kinase/protein kinase B is responsible for the protection of paeoniflorin upon H2O2-induced neural progenitor cell injury. Neuroscience. 2013;240:54–62.PubMedCrossRef
6.
go back to reference Jiang Z, Chen W, Yan X, Bi L, Guo S, Zhan Z. Paeoniflorin protects cells from GalN/TNF- -induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes. Acta Biochim Biophys Sin. 2014;46(5):357–67.PubMedCrossRef Jiang Z, Chen W, Yan X, Bi L, Guo S, Zhan Z. Paeoniflorin protects cells from GalN/TNF- -induced apoptosis via ER stress and mitochondria-dependent pathways in human L02 hepatocytes. Acta Biochim Biophys Sin. 2014;46(5):357–67.PubMedCrossRef
7.
go back to reference Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. AJP: Gastrointestinal and Liver Physiology. 2014;306(1):G27–36. Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. AJP: Gastrointestinal and Liver Physiology. 2014;306(1):G27–36.
8.
go back to reference Li X, Shen J, Zhong Z, Peng J, Wen H, Li J, et al. Paeoniflorin ameliorates schistosomiasis liver fibrosis through regulating IL-13 and its signalling molecules in mice. Parasitology. 2010;137(08):1213–25.PubMedCrossRef Li X, Shen J, Zhong Z, Peng J, Wen H, Li J, et al. Paeoniflorin ameliorates schistosomiasis liver fibrosis through regulating IL-13 and its signalling molecules in mice. Parasitology. 2010;137(08):1213–25.PubMedCrossRef
9.
go back to reference Chen X, Liu C, Lu Y, Yang Z, Lv Z, Xu Q, et al. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats. BMC Complement Altern Med. 2012;12:254.PubMedCentralPubMedCrossRef Chen X, Liu C, Lu Y, Yang Z, Lv Z, Xu Q, et al. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats. BMC Complement Altern Med. 2012;12:254.PubMedCentralPubMedCrossRef
10.
go back to reference Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90(12):1805–16.PubMedCrossRef Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90(12):1805–16.PubMedCrossRef
11.
go back to reference Colvin RA, Campanella GSV, Sun J, Luster AD. Intracellular Domains of CXCR3 That Mediate CXCL9, CXCL10, and CXCL11 Function. J Biol Chem. 2004;279(29):30219–27.PubMedCrossRef Colvin RA, Campanella GSV, Sun J, Luster AD. Intracellular Domains of CXCR3 That Mediate CXCL9, CXCL10, and CXCL11 Function. J Biol Chem. 2004;279(29):30219–27.PubMedCrossRef
12.
go back to reference Liang J, Zhang B, Shen R, Liu J, Gao M, Li Y, et al. Preventive effect of halofuginone on concanavalin A-induced liver fibrosis. PLoS One. 2013;8(12):e82232.PubMedCentralPubMedCrossRef Liang J, Zhang B, Shen R, Liu J, Gao M, Li Y, et al. Preventive effect of halofuginone on concanavalin A-induced liver fibrosis. PLoS One. 2013;8(12):e82232.PubMedCentralPubMedCrossRef
13.
go back to reference Shimizu A, Ishii E, Masuda Y, Sato A, Piao H, Kunugi S, et al. Renal inflammatory changes in acute hepatic failure-associated acute kidney injury. Am J Nephrol. 2013;37(4):378–88.PubMedCrossRef Shimizu A, Ishii E, Masuda Y, Sato A, Piao H, Kunugi S, et al. Renal inflammatory changes in acute hepatic failure-associated acute kidney injury. Am J Nephrol. 2013;37(4):378–88.PubMedCrossRef
14.
go back to reference Galmarini D, Tarenzi L, Cantaluppi G, Fassati LR, Mauri A, Zanandrea G, et al. Acute hepatic failure and renal damage. Experimental and clinical studies. Minerva Med. 1978;69(21):1417–26.PubMed Galmarini D, Tarenzi L, Cantaluppi G, Fassati LR, Mauri A, Zanandrea G, et al. Acute hepatic failure and renal damage. Experimental and clinical studies. Minerva Med. 1978;69(21):1417–26.PubMed
15.
go back to reference Mizuguchi Y, Kawada N, Kobayashi K, Morisawa S, Yamada J. Serotonin and tryptamine metabolism in the acute hepatic failure model--changes in tryptophan and its metabolites in the liver, brain, kidney and serum. Nihon Shokakibyo Gakkai Zasshi. 1990;87(3):780–9.PubMed Mizuguchi Y, Kawada N, Kobayashi K, Morisawa S, Yamada J. Serotonin and tryptamine metabolism in the acute hepatic failure model--changes in tryptophan and its metabolites in the liver, brain, kidney and serum. Nihon Shokakibyo Gakkai Zasshi. 1990;87(3):780–9.PubMed
16.
go back to reference Shao X, Qian Y, Xu C, Hong B, Xu W, Shen L, et al. The protective effect of intrasplenic transplantation of Ad-IL-18BP/IL-4 gene-modified fetal hepatocytes on ConA-induced hepatitis in mice. PLoS One. 2013;8(3):e58836.PubMedCentralPubMedCrossRef Shao X, Qian Y, Xu C, Hong B, Xu W, Shen L, et al. The protective effect of intrasplenic transplantation of Ad-IL-18BP/IL-4 gene-modified fetal hepatocytes on ConA-induced hepatitis in mice. PLoS One. 2013;8(3):e58836.PubMedCentralPubMedCrossRef
17.
go back to reference Jiang N, Zhang X, Zheng X, Chen D, Siu K, Wang H, et al. A novel in vivo siRNA Delivery system specifically targeting liver cells for protection of ConA-induced fulminant hepatitis. PLoS One. 2012;7(9):e44138.PubMedCentralPubMedCrossRef Jiang N, Zhang X, Zheng X, Chen D, Siu K, Wang H, et al. A novel in vivo siRNA Delivery system specifically targeting liver cells for protection of ConA-induced fulminant hepatitis. PLoS One. 2012;7(9):e44138.PubMedCentralPubMedCrossRef
18.
go back to reference Abraham AP, Ma FY, Mulley WR, Ozols E, Nikolic-Paterson DJ. Macrophage infiltration and renal damage are independent of matrix metalloproteinase 12 in the obstructed kidney. Nephrology. 2012;17(4):322–9.PubMedCrossRef Abraham AP, Ma FY, Mulley WR, Ozols E, Nikolic-Paterson DJ. Macrophage infiltration and renal damage are independent of matrix metalloproteinase 12 in the obstructed kidney. Nephrology. 2012;17(4):322–9.PubMedCrossRef
19.
go back to reference Hatano M, Sasaki S, Ohata S, Shiratsuchi Y, Yamazaki T, Nagata K, et al. Effects of Kupffer cell-depletion on Concanavalin A-induced hepatitis. Cell Immunol. 2008;251(1):25–30.PubMedCrossRef Hatano M, Sasaki S, Ohata S, Shiratsuchi Y, Yamazaki T, Nagata K, et al. Effects of Kupffer cell-depletion on Concanavalin A-induced hepatitis. Cell Immunol. 2008;251(1):25–30.PubMedCrossRef
20.
go back to reference Assis DN, Leng L, Du X, Zhang CK, Grieb G, Merk M, et al. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology. 2014;59(2):580–91.PubMedCentralPubMedCrossRef Assis DN, Leng L, Du X, Zhang CK, Grieb G, Merk M, et al. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology. 2014;59(2):580–91.PubMedCentralPubMedCrossRef
21.
go back to reference Nakamura K, Ito T, Yoneda M, Takamoto S, Nakade Y, Okamoto S, et al. Antithrombin III prevents concanavalin A-induced liver injury through inhibition of macrophage inflammatory protein-2 release and production of prostacyclin in mice. J Hepatol. 2002;36(6):766–73.PubMedCrossRef Nakamura K, Ito T, Yoneda M, Takamoto S, Nakade Y, Okamoto S, et al. Antithrombin III prevents concanavalin A-induced liver injury through inhibition of macrophage inflammatory protein-2 release and production of prostacyclin in mice. J Hepatol. 2002;36(6):766–73.PubMedCrossRef
22.
go back to reference Okamoto S, Yokohama S, Yoneda M, Haneda M, Nakamura K. Macrophage inflammatory protein-1alpha plays a crucial role in concanavalin A-induced liver injury through induction of proinflammatory cytokines in mice. Hepatol Res. 2005;32(1):38–45.PubMedCrossRef Okamoto S, Yokohama S, Yoneda M, Haneda M, Nakamura K. Macrophage inflammatory protein-1alpha plays a crucial role in concanavalin A-induced liver injury through induction of proinflammatory cytokines in mice. Hepatol Res. 2005;32(1):38–45.PubMedCrossRef
23.
go back to reference Cantaluppi V, Quercia AD, Dellepiane S, Ferrario S, Camussi G, Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transpl. 2014;29:2004.CrossRef Cantaluppi V, Quercia AD, Dellepiane S, Ferrario S, Camussi G, Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transpl. 2014;29:2004.CrossRef
24.
go back to reference Kim CS, Joo SY, Lee KE, Choi JS, Bae EH, Ma SK, et al. Paricalcitol attenuates 4-hydroxy-2-hexenal-Induced Inflammation and epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. PLoS One. 2013;8(5):e63186.PubMedCentralPubMedCrossRef Kim CS, Joo SY, Lee KE, Choi JS, Bae EH, Ma SK, et al. Paricalcitol attenuates 4-hydroxy-2-hexenal-Induced Inflammation and epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. PLoS One. 2013;8(5):e63186.PubMedCentralPubMedCrossRef
25.
go back to reference Bondar C, Araya RE, Guzman L, Rua EC, Chopita N, Chirdo FG. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One. 2014;9(2):e89068.PubMedCentralPubMedCrossRef Bondar C, Araya RE, Guzman L, Rua EC, Chopita N, Chirdo FG. Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One. 2014;9(2):e89068.PubMedCentralPubMedCrossRef
26.
go back to reference Zhou H, Bian D, Jiao X, Wei Z, Zhang H, Xia Y, et al. Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res. 2011;60(10):981–90.PubMedCrossRef Zhou H, Bian D, Jiao X, Wei Z, Zhang H, Xia Y, et al. Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res. 2011;60(10):981–90.PubMedCrossRef
Metadata
Title
Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration
Authors
Cheng Liu
Zhuoan Cheng
Yunman Wang
Xiuqin Dai
Jie Zhang
Dongying Xue
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0347-4

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue