Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Methodology

Validation of a locked nucleic acid based wild-type blocking PCR for the detection of EGFR exon 18/19 mutations

Authors: Liesbet Vliegen, Christophe Dooms, Wim De Kelver, Eric Verbeken, Johan Vansteenkiste, Peter Vandenberghe

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Treatment decisions in advanced non-small cell lung cancer rely on accurate analysis of the EGFR mutation status in small tissue samples. Sanger sequencing of PCR products is unbiased and cheap, but its detection threshold requiring 20 % infiltration by malignant cells is not optimal. Commercial kits, based on quantitative real-time PCR have better detection limits and can detect a wide spectrum of mutations but are considerably more expensive.

Methods

We developed a wild-type blocking PCR for EGFR G719A/S/C (exon 18), exon 19 deletions, and exon 20 insertions using locked nucleic acid (LNA) probes. The amplification products of positive reactions were analyzed by Sanger sequencing. We retrospectively validated this assay by comparison of the EGFR mutation status as obtained with Fragment Length Analysis and the Therascreen EGFR RGQ PCR kit.

Results

The EGFR mutation status for exon 18 and 19 as obtained with the LNA-PCR/sequencing assay correlated adequately with the results obtained by the other independent methods. Due to the lack of structural consistency among the insertions in exon 20, the latter are less amenable for a LNA-PCR design.

Conclusions

The LNA-PCR/sequencing assay presented here is specific, sensitive, and has a low detection threshold. In combination with allele-specific PCR reactions for T790M (exon 20) and L858R (exon 21), a wider scope of EGFR mutations can be assessed at a lower cost.

Virtual slides

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​1272520418142748​
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49. doi:10.3322/caac.20006.CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49. doi:10.3322/caac.20006.CrossRefPubMed
2.
go back to reference Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(10):1742–51. doi:10.1200/JCO.2007.12.1178.CrossRef Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(10):1742–51. doi:10.1200/JCO.2007.12.1178.CrossRef
3.
go back to reference Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer . 2006;118(2):257–62. doi:10.1002/ijc.21496.CrossRefPubMed Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer . 2006;118(2):257–62. doi:10.1002/ijc.21496.CrossRefPubMed
4.
go back to reference Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.CrossRefPubMed Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.CrossRefPubMed
5.
go back to reference Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277(2):301–8. doi:10.1111/j.1742–4658.2009.07448.x.CrossRefPubMed Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277(2):301–8. doi:10.1111/j.1742–4658.2009.07448.x.CrossRefPubMed
6.
go back to reference Marchetti A, Del Grammastro M, Filice G, Felicioni L, Rossi G, Graziano P, et al. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One. 2012;7(7), e42164. doi:10.1371/journal.pone.0042164.CrossRefPubMedCentralPubMed Marchetti A, Del Grammastro M, Filice G, Felicioni L, Rossi G, Graziano P, et al. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One. 2012;7(7), e42164. doi:10.1371/journal.pone.0042164.CrossRefPubMedCentralPubMed
7.
go back to reference Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. doi:10.1056/NEJMoa040938.CrossRefPubMed Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. doi:10.1056/NEJMoa040938.CrossRefPubMed
8.
go back to reference Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers”and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11. doi:10.1073/pnas.0405220101.CrossRefPubMedCentralPubMed Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers”and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11. doi:10.1073/pnas.0405220101.CrossRefPubMedCentralPubMed
9.
go back to reference Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. doi:10.1126/science.1099314.CrossRefPubMed Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500. doi:10.1126/science.1099314.CrossRefPubMed
10.
go back to reference Chen X, Zhu Q, Zhu L, Pei D, Liu Y, Yin Y, et al. Clinical perspective of afatinib in non-small cell lung cancer. Lung Cancer. 2013;81(2):155–61. doi:10.1016/j.lungcan.2013.02.021.CrossRefPubMed Chen X, Zhu Q, Zhu L, Pei D, Liu Y, Yin Y, et al. Clinical perspective of afatinib in non-small cell lung cancer. Lung Cancer. 2013;81(2):155–61. doi:10.1016/j.lungcan.2013.02.021.CrossRefPubMed
11.
go back to reference Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3), e73. doi:10.1371/journal.pmed.0020073.CrossRefPubMedCentralPubMed Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3), e73. doi:10.1371/journal.pmed.0020073.CrossRefPubMedCentralPubMed
12.
go back to reference Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28 Suppl 1:S24–31. doi:10.1038/onc.2009.198.CrossRefPubMedCentralPubMed Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28 Suppl 1:S24–31. doi:10.1038/onc.2009.198.CrossRefPubMedCentralPubMed
13.
go back to reference Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. The Lancet Oncology. 2012;13(1):e23–31. doi:10.1016/S1470–2045(11)70129–2. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. The Lancet Oncology. 2012;13(1):e23–31. doi:10.1016/S1470–2045(11)70129–2.
14.
go back to reference Wu JY, Wu SG, Yang CH, Gow CH, Chang YL, Yu CJ, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2008;14(15):4877–82. doi:10.1158/1078–0432.CCR–07–5123.CrossRef Wu JY, Wu SG, Yang CH, Gow CH, Chang YL, Yu CJ, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2008;14(15):4877–82. doi:10.1158/1078–0432.CCR–07–5123.CrossRef
15.
go back to reference Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12(2):220–9. doi:10.1158/1535–7163.MCT–12–0620.CrossRefPubMedCentralPubMed Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12(2):220–9. doi:10.1158/1535–7163.MCT–12–0620.CrossRefPubMedCentralPubMed
16.
go back to reference Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol: IASLC. 2010;5(10):1706–13. doi:10.1097/JTO.0b013e3181f1c8de.CrossRef Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol: IASLC. 2010;5(10):1706–13. doi:10.1097/JTO.0b013e3181f1c8de.CrossRef
17.
go back to reference Muley TR, Herth FJ, Schnabel PA, Dienemann H, Meister M. From tissue to molecular phenotyping: Pre-analytical requirements. Transl Lung Cancer Res. 2012;1(2):111–21.PubMedCentralPubMed Muley TR, Herth FJ, Schnabel PA, Dienemann H, Meister M. From tissue to molecular phenotyping: Pre-analytical requirements. Transl Lung Cancer Res. 2012;1(2):111–21.PubMedCentralPubMed
18.
go back to reference Ellison G, Donald E, McWalter G, Knight L, Fletcher L, Sherwood J, et al. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples. J Exp Clin Cancer Res. 2010;29:132. doi:10.1186/1756–9966–29–132.CrossRefPubMedCentralPubMed Ellison G, Donald E, McWalter G, Knight L, Fletcher L, Sherwood J, et al. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples. J Exp Clin Cancer Res. 2010;29:132. doi:10.1186/1756–9966–29–132.CrossRefPubMedCentralPubMed
19.
go back to reference Molina-Vila MA, Bertran-Alamillo J, Reguart N, Taron M, Castella E, Llatjos M, et al. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol: IASLC . 2008;3(11):1224–35. doi:10.1097/JTO.0b013e318189f579.CrossRef Molina-Vila MA, Bertran-Alamillo J, Reguart N, Taron M, Castella E, Llatjos M, et al. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol: IASLC . 2008;3(11):1224–35. doi:10.1097/JTO.0b013e318189f579.CrossRef
20.
go back to reference Clayton SJ, Scott FM, Walker J, Callaghan K, Haque K, Liloglou T, et al. K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin Chem. 2000;46(12):1929–38.PubMed Clayton SJ, Scott FM, Walker J, Callaghan K, Haque K, Liloglou T, et al. K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin Chem. 2000;46(12):1929–38.PubMed
21.
go back to reference Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–16.CrossRefPubMedCentralPubMed Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–16.CrossRefPubMedCentralPubMed
22.
go back to reference Thelwell N, Millington S, Solinas A, Booth J, Brown T. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 2000;28(19):3752–61.CrossRefPubMedCentralPubMed Thelwell N, Millington S, Solinas A, Booth J, Brown T. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 2000;28(19):3752–61.CrossRefPubMedCentralPubMed
23.
go back to reference Whitcombe D, Theaker J, Guy SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol. 1999;17(8):804–7. doi:10.1038/11751.CrossRefPubMed Whitcombe D, Theaker J, Guy SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol. 1999;17(8):804–7. doi:10.1038/11751.CrossRefPubMed
24.
go back to reference Dominguez PL, Kolodney MS. Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene. 2005;24(45):6830–4. doi:10.1038/sj.onc.1208832.CrossRefPubMed Dominguez PL, Kolodney MS. Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene. 2005;24(45):6830–4. doi:10.1038/sj.onc.1208832.CrossRefPubMed
25.
go back to reference Dooms C, Vliegen L, Vander Borght S, Yserbyt J, Hantson I, Verbeken E, et al. Suitability of small bronchoscopic tumour specimens for lung cancer genotyping. Respiration; international review of thoracic diseases. 2014;88(5):371–7. doi:10.1159/000366136.CrossRefPubMed Dooms C, Vliegen L, Vander Borght S, Yserbyt J, Hantson I, Verbeken E, et al. Suitability of small bronchoscopic tumour specimens for lung cancer genotyping. Respiration; international review of thoracic diseases. 2014;88(5):371–7. doi:10.1159/000366136.CrossRefPubMed
Metadata
Title
Validation of a locked nucleic acid based wild-type blocking PCR for the detection of EGFR exon 18/19 mutations
Authors
Liesbet Vliegen
Christophe Dooms
Wim De Kelver
Eric Verbeken
Johan Vansteenkiste
Peter Vandenberghe
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0293-1

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue