Skip to main content
Top
Published in: Diagnostic Pathology 1/2015

Open Access 01-12-2015 | Case Report

RETRACTED ARTICLE: Clinicopathologic characterization of visceral gout of various internal organs -a study of 2 cases from a venom and toxin research center

Authors: Alireza Nasoori, Behnam Pedram, Zahra Kamyabi-Moghaddam, Aram Mokarizadeh, Hamid Pirasteh, Amir Farshid Fayyaz, Mohammad Barat Shooshtari

Published in: Diagnostic Pathology | Issue 1/2015

Login to get access

Abstract

Background

Gout is a metabolic disorder that results in hyperuricemia and the deposition of positively birefringent monosodium urate crystals in various parts of the body. The purpose of this study was to characterize the incidence and diagnostic features of visceral gout found at necropsy in two patients.

Case presentation

The authors present an unusual report of untreated gout leading to major structure destructions in visceral organs. Gross post-mortem examination revealed a white powdery substance and display needle-like crystalline symmetry under the macroscopic on the visceral surfaces. Microscopically, the presence of crystalline deposits (urate tophi) were detected in visceral organs, such as; kidney, liver, lung and mesentery. Irrespective of its location, gout was observed, by H&E, as intracellular and extracellular eosinophilic deposits that compressed surrounding tissues. Moreover, numerous necrotizing granulomas of multifarious sizes were observed that were compounded by large aggregations of eosinophilic material (gout), surrounded by epithelioid macrophages, lymphoplasmacytic cells, foreign body multinucleated giant cells, fibrosis, fibroplasia and few edema. On the other hand, our results revealed that granulomatous nodules in the mesentery and kidney contained large numbers of gout foci compared with lung and liver. Furthermore, the immediate cause of death in these cases were not identified, but appeared to result from multiple factors, including the visceral gout due to unsuitable environmental conditions.

Conclusion

In summary, we have identified a valid histopathologic damage index for use in laboratory studies of visceral gout. This system provides a feasible method of representing visceral damage in gout, and may allow for better understanding of the natural history, pathophysiology and the management of acute attacks of gouty visceral in this disease. Finally, to the best of our knowledge, understanding of the distribution of monosodium urate crystals within the body can aid clinical diagnosis and further understanding of the resulting pathology.

Virtual Slides

The virtual slide(s) for this article can be found here: http://​www.​diagnosticpathol​ogy.​diagnomx.​eu/​vs/​1293547351151638​.
Literature
1.
go back to reference Mader DR. Gout. In: Mader DR, editor. Reptile Medicine and Surgery. 2nd ed. St Louis, MO: Elsevier; 2006. p. 793–800.CrossRef Mader DR. Gout. In: Mader DR, editor. Reptile Medicine and Surgery. 2nd ed. St Louis, MO: Elsevier; 2006. p. 793–800.CrossRef
2.
go back to reference Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum. 2004;50(8):2400–14.CrossRefPubMed Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum. 2004;50(8):2400–14.CrossRefPubMed
3.
go back to reference Faires JS, McCarty DJ. Acute arthritis in man and dog after intrasynovial infection of sodium urate crystals. Lancet. 1962;280:682–5.CrossRef Faires JS, McCarty DJ. Acute arthritis in man and dog after intrasynovial infection of sodium urate crystals. Lancet. 1962;280:682–5.CrossRef
4.
go back to reference Terkeltaub R, Zachariae C, Santoro D, Martin J, Peveri P, Matsushima K. Monocyte-derived heterophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum. 1991;34:894–903.CrossRefPubMed Terkeltaub R, Zachariae C, Santoro D, Martin J, Peveri P, Matsushima K. Monocyte-derived heterophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum. 1991;34:894–903.CrossRefPubMed
5.
go back to reference Terkeltaub R, Baird S, Sears P, Santiago R, Boisvert W. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of heterophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum. 1998;41(5):900–9.CrossRefPubMed Terkeltaub R, Baird S, Sears P, Santiago R, Boisvert W. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of heterophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum. 1998;41(5):900–9.CrossRefPubMed
6.
go back to reference Montali RJ, Bush M, Smeller JM. The pathology of nephrotoxicity of gentamicin in snakes. A model for reptilian gout. Vet Pathol. 1979;16:108–15.PubMed Montali RJ, Bush M, Smeller JM. The pathology of nephrotoxicity of gentamicin in snakes. A model for reptilian gout. Vet Pathol. 1979;16:108–15.PubMed
7.
go back to reference Ward FP, Slaughter LJ. Visceral gout in a captive Cooper's hawk. J Wildl Dis. 1968;4:91–3. Ward FP, Slaughter LJ. Visceral gout in a captive Cooper's hawk. J Wildl Dis. 1968;4:91–3.
8.
go back to reference Dessauer HC. Blood chemistry of reptiles. In: Gans C, Parsons TS, editors. biology of the Reptilia, Vol.3. London: Academic; 1970. p. 25. Dessauer HC. Blood chemistry of reptiles. In: Gans C, Parsons TS, editors. biology of the Reptilia, Vol.3. London: Academic; 1970. p. 25.
9.
go back to reference Guo X, Huang K, Tang J. Clinicopathology of gout in growing layers induced by high calcium and high protein diets. Br Poult Sci. 2005;46:641–6.CrossRefPubMed Guo X, Huang K, Tang J. Clinicopathology of gout in growing layers induced by high calcium and high protein diets. Br Poult Sci. 2005;46:641–6.CrossRefPubMed
10.
go back to reference Swimmer JY. Biochemical responses to fibropapilloma and captivity in the green turtle. J Wildl Dis. 2000;36:102–10.CrossRefPubMed Swimmer JY. Biochemical responses to fibropapilloma and captivity in the green turtle. J Wildl Dis. 2000;36:102–10.CrossRefPubMed
11.
go back to reference Mader D. Gout. In: Mader D, editor. Reptile medicine and surgery. 2nd ed. Philadelphia, USA: Saunders; 2005. p. 374–9. Mader D. Gout. In: Mader D, editor. Reptile medicine and surgery. 2nd ed. Philadelphia, USA: Saunders; 2005. p. 374–9.
12.
go back to reference Roudybush TE. Psittacine Nutrition. In: Jenkins JR, editor. The Veterinary Clinics of North America: Exotic Animal Practice. Philadephia. PA: W.B Saunders Co.; 1999. Roudybush TE. Psittacine Nutrition. In: Jenkins JR, editor. The Veterinary Clinics of North America: Exotic Animal Practice. Philadephia. PA: W.B Saunders Co.; 1999.
13.
go back to reference Nasoori A, Taghipour A, Shahbazzadeh D, Aminirissehei A, Moghaddam S. Heart place and tail length evaluation in Naja oxiana, Macrovipera lebetina, and Montivipera latifii. Asian Pac J Trop Med. 2014;7S1:S137-42.PubMed Nasoori A, Taghipour A, Shahbazzadeh D, Aminirissehei A, Moghaddam S. Heart place and tail length evaluation in Naja oxiana, Macrovipera lebetina, and Montivipera latifii. Asian Pac J Trop Med. 2014;7S1:S137-42.PubMed
14.
go back to reference Dehghani R, Fathi B, Shahi MP, Jazayeri M. Ten years of snakebites in Iran. Toxicon. 2014;90:291–8.CrossRefPubMed Dehghani R, Fathi B, Shahi MP, Jazayeri M. Ten years of snakebites in Iran. Toxicon. 2014;90:291–8.CrossRefPubMed
15.
go back to reference Feofanov AV, Sharonov GV, Dubinnyi MA, Astapova MV, Kudelina IA, Dubovskii PV, et al. Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry (Mosc). 2004;69(10):1148–57.CrossRef Feofanov AV, Sharonov GV, Dubinnyi MA, Astapova MV, Kudelina IA, Dubovskii PV, et al. Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry (Mosc). 2004;69(10):1148–57.CrossRef
16.
go back to reference Patel AK, Ghodasara DJ, Dave CJ, Jani PB, Joshi BP, Prajapati KS. Experimental studies on etiopathology of visceral gout in broiler chicks. Indian J Veterinary Pathology. 2007;31(1):24–8. Patel AK, Ghodasara DJ, Dave CJ, Jani PB, Joshi BP, Prajapati KS. Experimental studies on etiopathology of visceral gout in broiler chicks. Indian J Veterinary Pathology. 2007;31(1):24–8.
17.
go back to reference Rao TB, Das JH, Sharma DR. An outbreak ofgout in East Godavari District An- Dhram Pradesh. Poult Advis. 1993;26:43–5. Rao TB, Das JH, Sharma DR. An outbreak ofgout in East Godavari District An- Dhram Pradesh. Poult Advis. 1993;26:43–5.
18.
go back to reference Dumonceaux G, Harrison GJ. Toxicology. In: Ritchie BW, Harrison GJ, Harrison LR, editors. Avian Medicine: Principles and Application. Delray Beach, FL: HBD Intl; 2001. p. 1036–41. Dumonceaux G, Harrison GJ. Toxicology. In: Ritchie BW, Harrison GJ, Harrison LR, editors. Avian Medicine: Principles and Application. Delray Beach, FL: HBD Intl; 2001. p. 1036–41.
19.
go back to reference Nayak NC, Chakrabarti T, Chakrabarti A. An outbreak of gout in poultry in West Bengal. Indian Veterinary J. 1988;65:1080–1. Nayak NC, Chakrabarti T, Chakrabarti A. An outbreak of gout in poultry in West Bengal. Indian Veterinary J. 1988;65:1080–1.
20.
go back to reference Mubarak M, Sharkawy AA. Toxopathology of gout induced in laying pullets by sodium bicarbonate toxicity. Environ Toxicol Pharmacol. 1999;7(4):227–36.CrossRefPubMed Mubarak M, Sharkawy AA. Toxopathology of gout induced in laying pullets by sodium bicarbonate toxicity. Environ Toxicol Pharmacol. 1999;7(4):227–36.CrossRefPubMed
21.
go back to reference Tran TH, Pham JT, Shafeeq H, Manigault KR, Arya V. Role of interleukin-1 inhibitors in the management of gout. Pharmacotherapy. 2013;33(7):744–53.CrossRefPubMed Tran TH, Pham JT, Shafeeq H, Manigault KR, Arya V. Role of interleukin-1 inhibitors in the management of gout. Pharmacotherapy. 2013;33(7):744–53.CrossRefPubMed
22.
go back to reference Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. OR6-004 – MRP8/14 promote MSU-crystal induced inflammation. J Roth Pediatric Rheumatology. 2013;11(1):A99.CrossRef Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. OR6-004 – MRP8/14 promote MSU-crystal induced inflammation. J Roth Pediatric Rheumatology. 2013;11(1):A99.CrossRef
23.
go back to reference Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 2014;66(5):1327–39.CrossRefPubMed Holzinger D, Nippe N, Vogl T, Marketon K, Mysore V, Weinhage T, et al. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 2014;66(5):1327–39.CrossRefPubMed
24.
go back to reference Robbins SL, Cotran RS, Kumar V. The kidney. In: Robbins SL, Cotran RS, Kumar V, editors. Pathologic Basis of Disease. 3rd ed. Philadelphia, PA: WB Saunders; 1984. p. 991–1061. Robbins SL, Cotran RS, Kumar V. The kidney. In: Robbins SL, Cotran RS, Kumar V, editors. Pathologic Basis of Disease. 3rd ed. Philadelphia, PA: WB Saunders; 1984. p. 991–1061.
25.
go back to reference Morris JH, Schoene WC. The nervous system. In: Robbins SL, Cotran RS, Kumar V, editors. Pathologic Basis of Disease. 3rd ed. Philadelphia, PA: WB Saunders; 1984. p. 1370–436. Morris JH, Schoene WC. The nervous system. In: Robbins SL, Cotran RS, Kumar V, editors. Pathologic Basis of Disease. 3rd ed. Philadelphia, PA: WB Saunders; 1984. p. 1370–436.
26.
go back to reference Oaks JL, Meteyer CU, Rideout BA, Shivapradsad HL, Gilbert M, Virani M, et al. Diagnostic investigation of vulture mortality: the anti-inflammatory drug diclofenac is associated with visceral gout. In: Chancellor RD, Meyburg B-U, editors. Raptors worldwide. Budapest, Hungary: World Working Group on Birds of Prey and Owls; 2004. p. 241–3. Oaks JL, Meteyer CU, Rideout BA, Shivapradsad HL, Gilbert M, Virani M, et al. Diagnostic investigation of vulture mortality: the anti-inflammatory drug diclofenac is associated with visceral gout. In: Chancellor RD, Meyburg B-U, editors. Raptors worldwide. Budapest, Hungary: World Working Group on Birds of Prey and Owls; 2004. p. 241–3.
27.
go back to reference Liu-Bryan R, Terkeltaub R. Tophus biology and pathogenesis of monosodium urate crystal induced inflammation. In: Terkeltaub R, editor. Gout and other crystal athropathies. Philadelphia, USA: Saunders; 2012. p. 59–71.CrossRef Liu-Bryan R, Terkeltaub R. Tophus biology and pathogenesis of monosodium urate crystal induced inflammation. In: Terkeltaub R, editor. Gout and other crystal athropathies. Philadelphia, USA: Saunders; 2012. p. 59–71.CrossRef
28.
go back to reference Ronco C, Francesco R. Hyperuricemic syndromes: pathophysiology and therapy. Karger Medical and Scientific Publishers. 2005;147:1–21. Ronco C, Francesco R. Hyperuricemic syndromes: pathophysiology and therapy. Karger Medical and Scientific Publishers. 2005;147:1–21.
29.
go back to reference Funk RS. Anorexia. In: Mader D, editor. Reptile medicine and surgery. 2nd ed. Philadelphia, USA: Saunders; 2005. p. 346–648. Funk RS. Anorexia. In: Mader D, editor. Reptile medicine and surgery. 2nd ed. Philadelphia, USA: Saunders; 2005. p. 346–648.
30.
go back to reference Brown LA. Crystal-Induced Arthropathies: Gout, Pseudogout and Apatite-Associated Syndromes. Ann Intern Med. 2007;147(11):819.CrossRef Brown LA. Crystal-Induced Arthropathies: Gout, Pseudogout and Apatite-Associated Syndromes. Ann Intern Med. 2007;147(11):819.CrossRef
Metadata
Title
RETRACTED ARTICLE: Clinicopathologic characterization of visceral gout of various internal organs -a study of 2 cases from a venom and toxin research center
Authors
Alireza Nasoori
Behnam Pedram
Zahra Kamyabi-Moghaddam
Aram Mokarizadeh
Hamid Pirasteh
Amir Farshid Fayyaz
Mohammad Barat Shooshtari
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2015
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-015-0251-y

Other articles of this Issue 1/2015

Diagnostic Pathology 1/2015 Go to the issue