Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2019

Open Access 01-12-2019 | Stroke | Research

Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus

Authors: Robert B. Hamilton, Fabien Scalzo, Kevin Baldwin, Amber Dorn, Paul Vespa, Xiao Hu, Marvin Bergsneider

Published in: Fluids and Barriers of the CNS | Issue 1/2019

Login to get access

Abstract

Background

This study investigated cerebrospinal fluid (CSF) hydrodynamics using cine phase-contrast MRI in the cerebral aqueduct and the prepontine cistern between three distinct groups: pre-shunt normal pressure hydrocephalus (NPH) patients, post-shunt NPH patients, and controls. We hypothesized that the hyperdynamic flow of CSF through the cerebral aqueduct seen in NPH patients was due to a reduction in cisternal CSF volume buffering. Both hydrodynamic (velocity, flow, stroke volume) and peak flow latency (PFL) parameters were investigated.

Methods

Scans were conducted on 30 pre-treatment patients ranging in age from 58 to 88 years along with an additional 12 controls. Twelve patients also received scans following either ventriculoatrial (VA) or ventriculoperitoneal (VP) shunt treatment (9 VP, 3 VA), ranging in age from 74 to 89 years with a mean follow up time of 6 months.

Results

Significant differences in area, velocity, flow, and stroke volume for the cerebral aqueduct were found between the pre-treatment NPH group and the healthy controls. Shunting caused a significant decrease in both caudal and cranial mean flow and stroke volume in the cerebral aqueduct. No significant changes were found in the prepontine cistern between the pre-treatment group and healthy controls. For the PFL, no significant differences were seen in the cerebral aqueduct between any of the three groups; however, the prepontine cistern PFL was significantly decreased in the pre-treatment NPH group when compared to the control group.

Conclusions

Although several studies have quantified the changes in aqueductal flow between hydrocephalic groups and controls, few studies have investigated prepontine cistern flow. Our study was the first to investigate both regions in the same patients for NPH pre- and post- treatment. Following shunt treatment, the aqueductal CSF metrics decreased toward control values, while the prepontine cistern metrics trended up (not significantly) from the normal values established in this study. The opposing trend of the two locations suggests a redistribution of CSF pulsatility in NPH patients. Furthermore, the significantly decreased latency of the prepontine cisternal CSF flow suggests additional evidence for CSF pulsatility dysfunction.
Literature
2.
go back to reference Bateman C. The reversibility of reduced cortical vein compliance in normal pressure hydrocephalus following shunt insertion. Neuroradiology. 2003;45:65–70.PubMedCrossRef Bateman C. The reversibility of reduced cortical vein compliance in normal pressure hydrocephalus following shunt insertion. Neuroradiology. 2003;45:65–70.PubMedCrossRef
3.
go back to reference Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004;27:145–65.PubMed Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004;27:145–65.PubMed
4.
go back to reference Owler B, Momjian S, Czosnkya Z, Czosnkya M, Pena A, Harris N, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline value. J Cereb Blood Flow Metab. 2004;24:17–23.PubMedCrossRef Owler B, Momjian S, Czosnkya Z, Czosnkya M, Pena A, Harris N, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline value. J Cereb Blood Flow Metab. 2004;24:17–23.PubMedCrossRef
5.
go back to reference Greitz D. Paradigm shift in hydrocephalus research in legacy of dandy’s pioneering work: rationale for third ventriculos-tomy in communicating hydrocephalus. Childs Nerv Syst. 2007;23:487–9.PubMedPubMedCentralCrossRef Greitz D. Paradigm shift in hydrocephalus research in legacy of dandy’s pioneering work: rationale for third ventriculos-tomy in communicating hydrocephalus. Childs Nerv Syst. 2007;23:487–9.PubMedPubMedCentralCrossRef
6.
go back to reference Bergsneider M, Alwan A, Falkson L, Rubinstein E. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model. Acta Neurochir Suppl. 1998;71:266–8.PubMed Bergsneider M, Alwan A, Falkson L, Rubinstein E. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model. Acta Neurochir Suppl. 1998;71:266–8.PubMed
7.
go back to reference Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.PubMedPubMedCentralCrossRef Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.PubMedPubMedCentralCrossRef
8.
go back to reference Symss NP, Oi S. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. A review. J Neurosurg Pediatr. 2013;11:170–7.PubMedCrossRef Symss NP, Oi S. Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. A review. J Neurosurg Pediatr. 2013;11:170–7.PubMedCrossRef
10.
go back to reference Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. Neuroradiology. 1992;34:370–80.PubMedCrossRef Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. Neuroradiology. 1992;34:370–80.PubMedCrossRef
11.
go back to reference Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hyrocephalus. Pediatr Neurosurg. 2002;36:281–303.PubMedCrossRef Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hyrocephalus. Pediatr Neurosurg. 2002;36:281–303.PubMedCrossRef
12.
go back to reference Bradley W, Scalzo D, Queralt J, Nitz W, Atkinson D, Wong P. Normal pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radioogy. 1996;198:523–9.CrossRef Bradley W, Scalzo D, Queralt J, Nitz W, Atkinson D, Wong P. Normal pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radioogy. 1996;198:523–9.CrossRef
13.
go back to reference Kim D, Choi J, Huh R, Yun P, Kim D. Quantitative assessment of cerebrospinal flid hyrodnamics using a phase-contrast cine m image in hydrocephalus. Childs Nerv Syst. 1999;15:461–7.PubMedCrossRef Kim D, Choi J, Huh R, Yun P, Kim D. Quantitative assessment of cerebrospinal flid hyrodnamics using a phase-contrast cine m image in hydrocephalus. Childs Nerv Syst. 1999;15:461–7.PubMedCrossRef
14.
go back to reference Luetmer P, Huston J, Friedman A, Dixon G, Petersen R, Jack C. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 1991;50:534–43. Luetmer P, Huston J, Friedman A, Dixon G, Petersen R, Jack C. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 1991;50:534–43.
15.
go back to reference Bradley W, Whittemore R, Kortnan E, Davis J. Marked cerebrospnal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 1991;178:459–66.PubMedCrossRef Bradley W, Whittemore R, Kortnan E, Davis J. Marked cerebrospnal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 1991;178:459–66.PubMedCrossRef
16.
go back to reference Abbey P, Singh P, Khandelwal N, Mikherjee K. Shunt surgery effects on crebrospinal fluid flow across the aqueduct of sylvius in patients with communicating hydrocephalus. J Clin Neurosci. 2009;16:514–8.PubMedCrossRef Abbey P, Singh P, Khandelwal N, Mikherjee K. Shunt surgery effects on crebrospinal fluid flow across the aqueduct of sylvius in patients with communicating hydrocephalus. J Clin Neurosci. 2009;16:514–8.PubMedCrossRef
17.
go back to reference Baledent O, Gondry-Jouet C, Meyer ME, De Marco G, Le Gars D, Henry-Feugas MC, et al. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and and patients with communicating hydrocephalus. Invest Radiol. 2004;39:45–55.PubMedCrossRef Baledent O, Gondry-Jouet C, Meyer ME, De Marco G, Le Gars D, Henry-Feugas MC, et al. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and and patients with communicating hydrocephalus. Invest Radiol. 2004;39:45–55.PubMedCrossRef
18.
go back to reference Unal O, Kartum A, Avcu S, Etlik O, Arslan H, Bora A. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age. Diagn Interv Radiol. 2009;15:227–31.PubMed Unal O, Kartum A, Avcu S, Etlik O, Arslan H, Bora A. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age. Diagn Interv Radiol. 2009;15:227–31.PubMed
19.
go back to reference Balédent O, Henry-Feugeas MC, Idy-Peretti I. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol. 2001;36(7):368–77.PubMedCrossRef Balédent O, Henry-Feugeas MC, Idy-Peretti I. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol. 2001;36(7):368–77.PubMedCrossRef
20.
go back to reference Wagshul M, Chen J, Egnor M, McCormack E, Roche P. Amplitude and phase of cerebrospinal fluid pulsatons: experiental studies and review of the literature. J Neurosurg. 2006;104:810–9.PubMedCrossRef Wagshul M, Chen J, Egnor M, McCormack E, Roche P. Amplitude and phase of cerebrospinal fluid pulsatons: experiental studies and review of the literature. J Neurosurg. 2006;104:810–9.PubMedCrossRef
21.
go back to reference Greitz D, Hannerz J, Rahn R, Bolander H, Ericsson A. MR imaging of cerebrospinal fluid dynamics in health and disease on the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiologica. 1993;35(3):204–11.CrossRef Greitz D, Hannerz J, Rahn R, Bolander H, Ericsson A. MR imaging of cerebrospinal fluid dynamics in health and disease on the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiologica. 1993;35(3):204–11.CrossRef
23.
go back to reference Sankari S, Gondry-Jouet C, Fichten A, Godefroy O, Serot JM, et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011;8(1):12.PubMedPubMedCentralCrossRef Sankari S, Gondry-Jouet C, Fichten A, Godefroy O, Serot JM, et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011;8(1):12.PubMedPubMedCentralCrossRef
24.
go back to reference Fasano A, Tang-Wai DF. Cerebrospinal fluid biomarkers and normal pressure hydrocephalus: a perfect duo? Can J Neurol Sci. 2018;45(1):1–2.PubMedCrossRef Fasano A, Tang-Wai DF. Cerebrospinal fluid biomarkers and normal pressure hydrocephalus: a perfect duo? Can J Neurol Sci. 2018;45(1):1–2.PubMedCrossRef
25.
go back to reference Alperin N, Lee S. PUBS: pulsatility-based segmentation of lumens conducting non-steady flow. Magn Reson Med. 2003;49:934–44.PubMedCrossRef Alperin N, Lee S. PUBS: pulsatility-based segmentation of lumens conducting non-steady flow. Magn Reson Med. 2003;49:934–44.PubMedCrossRef
26.
go back to reference Hamilton R, Dye J, Frew A, Baldwin K, Hu X, Bergsneider M. Quantification of pulsatile, cerebrospinal fluid flow within the prepontine cistern. Acta Neurochir Suppl. 2011;114:191–5.CrossRef Hamilton R, Dye J, Frew A, Baldwin K, Hu X, Bergsneider M. Quantification of pulsatile, cerebrospinal fluid flow within the prepontine cistern. Acta Neurochir Suppl. 2011;114:191–5.CrossRef
27.
go back to reference Bateman G, Levi C, Schofield P, Wang Y, Lovett E. the pathophysiology of the aqueduct stroke volume in normal pressure hydrocephalus: can co-morbidity with other forms of dementia be excluded? Neuroradiology. 2005;47:741–8.PubMedCrossRef Bateman G, Levi C, Schofield P, Wang Y, Lovett E. the pathophysiology of the aqueduct stroke volume in normal pressure hydrocephalus: can co-morbidity with other forms of dementia be excluded? Neuroradiology. 2005;47:741–8.PubMedCrossRef
28.
go back to reference Edwards R, Dombrowski S, Luciano M, Pople I. Chronic hydrocephalus in adults. Brain Pathol. 2004;14:325–36.PubMedCrossRef Edwards R, Dombrowski S, Luciano M, Pople I. Chronic hydrocephalus in adults. Brain Pathol. 2004;14:325–36.PubMedCrossRef
29.
go back to reference Greitz D. Cerebrospinal fluid circulation and associated itracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternoraphy. Acta Radiol Suppl. 1993;386:1–23.PubMed Greitz D. Cerebrospinal fluid circulation and associated itracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternoraphy. Acta Radiol Suppl. 1993;386:1–23.PubMed
30.
go back to reference Ringstad G, Emblem KE, Eide PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg. 2015;4:1–8. Ringstad G, Emblem KE, Eide PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg. 2015;4:1–8.
31.
go back to reference Algin O, Hakyemez B, Parlak M. The efficiency of PC-MRI in diagnosis of normal pressure hydrocephalus and prediction of shunt response. Acad Radiol. 2010;17(2):181–7.PubMedCrossRef Algin O, Hakyemez B, Parlak M. The efficiency of PC-MRI in diagnosis of normal pressure hydrocephalus and prediction of shunt response. Acad Radiol. 2010;17(2):181–7.PubMedCrossRef
32.
go back to reference Scollato A, Gallina P, Gautam B, Pellicano G, Cavallini C, Tenenbaum R, et al. Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal pressure hydrocephalus. Am J Neuroradiol. 2009;30:1580–6.PubMedCrossRef Scollato A, Gallina P, Gautam B, Pellicano G, Cavallini C, Tenenbaum R, et al. Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal pressure hydrocephalus. Am J Neuroradiol. 2009;30:1580–6.PubMedCrossRef
33.
go back to reference Vanneste J, Augustijn P, Davies G, Dirven C, Tan W. Normal-pressure hydrocephalus Is cisternography still useful in selecting patients for a shunt? Arch Neurol. 1992;49:366–70.PubMedCrossRef Vanneste J, Augustijn P, Davies G, Dirven C, Tan W. Normal-pressure hydrocephalus Is cisternography still useful in selecting patients for a shunt? Arch Neurol. 1992;49:366–70.PubMedCrossRef
34.
go back to reference Raftopoulos C, Chaskis C, Delecluse F, Cantraine F, Bidaut L, Brotchi J. Morphological quantitative analysis of intracranial pressure waves in normal pressure hydrocephalus. Neuro Res. 1992;14:389–96.CrossRef Raftopoulos C, Chaskis C, Delecluse F, Cantraine F, Bidaut L, Brotchi J. Morphological quantitative analysis of intracranial pressure waves in normal pressure hydrocephalus. Neuro Res. 1992;14:389–96.CrossRef
35.
go back to reference Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C. Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2009;76:965–70.CrossRef Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C. Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2009;76:965–70.CrossRef
36.
go back to reference Kasprowicz M, Asgari S, Bergsneider M, Czonskya M, Hamilton R, Hu X. Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse. J Neurosci Methods. 2010;190:310–8.PubMedPubMedCentralCrossRef Kasprowicz M, Asgari S, Bergsneider M, Czonskya M, Hamilton R, Hu X. Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse. J Neurosci Methods. 2010;190:310–8.PubMedPubMedCentralCrossRef
37.
go back to reference Eide PK. Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir. 2006;148:21–9.PubMedCrossRef Eide PK. Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir. 2006;148:21–9.PubMedCrossRef
38.
go back to reference Eide P, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir. 2006;148:1151–6.PubMedCrossRef Eide P, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir. 2006;148:1151–6.PubMedCrossRef
39.
go back to reference Eide P, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery. 2010;66:80–91.PubMedCrossRef Eide P, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery. 2010;66:80–91.PubMedCrossRef
40.
go back to reference Hu X, Hamilton R, Baldwin K, Vespa P, Bergsneider M. Automated extraction of decision rules for predicting lumbar drain outcome by analyzing overnight intracranial pressure. Acta Neurochir Suppl. 2012;114:207–12.PubMedCrossRef Hu X, Hamilton R, Baldwin K, Vespa P, Bergsneider M. Automated extraction of decision rules for predicting lumbar drain outcome by analyzing overnight intracranial pressure. Acta Neurochir Suppl. 2012;114:207–12.PubMedCrossRef
41.
go back to reference Williams M, Razumovsky A, Hanley D. Comparison of Pcsf monitoring ad controlled CSF drainage diagnose normal pressure hydrocephalus. Acta Neurochir Suppl. 1998;71:328–30.PubMed Williams M, Razumovsky A, Hanley D. Comparison of Pcsf monitoring ad controlled CSF drainage diagnose normal pressure hydrocephalus. Acta Neurochir Suppl. 1998;71:328–30.PubMed
42.
go back to reference Malm M, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J. The predictive value of cerebrospinal fluid dynamic tests in patients with the idiopathic adult hydrocephalus syndrome. Arch Neurol. 1995;52:783–9.PubMedCrossRef Malm M, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J. The predictive value of cerebrospinal fluid dynamic tests in patients with the idiopathic adult hydrocephalus syndrome. Arch Neurol. 1995;52:783–9.PubMedCrossRef
43.
go back to reference B. Kahlon. Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol. Neurosurg, Psychiatry. 2002. vol. 73, pp. 721–726. B. Kahlon. Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol. Neurosurg, Psychiatry. 2002. vol. 73, pp. 721–726.
44.
go back to reference Walchenbach R, Geiger E, Thomeer R. The value of temporary external lumbar drainage in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2002;72:503–6.PubMedPubMedCentral Walchenbach R, Geiger E, Thomeer R. The value of temporary external lumbar drainage in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2002;72:503–6.PubMedPubMedCentral
45.
go back to reference Marmarou A, Young H, Aygok G, Sauwachi S, Tsuji O, Yamamoto T, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102:977–87. Marmarou A, Young H, Aygok G, Sauwachi S, Tsuji O, Yamamoto T, et al. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102:977–87.
46.
go back to reference Petersen R, Mokri B, Laws E. Surgical treatment of idiopathic hydrocephalus in elderly patients. Neurology. 1985;35:307–11.PubMedCrossRef Petersen R, Mokri B, Laws E. Surgical treatment of idiopathic hydrocephalus in elderly patients. Neurology. 1985;35:307–11.PubMedCrossRef
47.
go back to reference Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA. Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg. 1997;87:687–93.PubMedCrossRef Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA. Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg. 1997;87:687–93.PubMedCrossRef
48.
go back to reference Andersson K, Sundström N, Malm J, Eklund A. Effect of resting pressure on the estimate of cerebrospinal fluid outflow conductance. Fluids Barriers CNS. 2011;8:15.PubMedPubMedCentralCrossRef Andersson K, Sundström N, Malm J, Eklund A. Effect of resting pressure on the estimate of cerebrospinal fluid outflow conductance. Fluids Barriers CNS. 2011;8:15.PubMedPubMedCentralCrossRef
49.
go back to reference Kim D, Czosnkya Z, Keong N, Radolovitch D, Smielewski P, Sutcliffe M, et al. Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery. 2009;64:494–501.PubMedCrossRef Kim D, Czosnkya Z, Keong N, Radolovitch D, Smielewski P, Sutcliffe M, et al. Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery. 2009;64:494–501.PubMedCrossRef
50.
go back to reference Eklund A, Smieleski P, Chambers I, Alperin N, Malm J, Czosnkya M, et al. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007;45:719–35.PubMedCrossRef Eklund A, Smieleski P, Chambers I, Alperin N, Malm J, Czosnkya M, et al. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007;45:719–35.PubMedCrossRef
51.
go back to reference Kahlon B, Sundbarg G, Rehncrona S. Lumbar infusion test in the diagnosis of normal pressure hydrocephalus. Acta Neurol Scand. 2005;111:379–84.PubMedCrossRef Kahlon B, Sundbarg G, Rehncrona S. Lumbar infusion test in the diagnosis of normal pressure hydrocephalus. Acta Neurol Scand. 2005;111:379–84.PubMedCrossRef
52.
go back to reference Meier U, Bartels P. The importance of the intracathecal infusion test in the diagnostic of normal-pressure hydrocephalus. Eur Neurol. 2001;46:178–86.PubMedCrossRef Meier U, Bartels P. The importance of the intracathecal infusion test in the diagnostic of normal-pressure hydrocephalus. Eur Neurol. 2001;46:178–86.PubMedCrossRef
53.
go back to reference Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer JA, et al. Does CSF outflow resistance predict the response to shunting in patients with normal pressure hydrocephalus? Acta Neurochir Suppl. 1998;71:331–3.PubMed Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer JA, et al. Does CSF outflow resistance predict the response to shunting in patients with normal pressure hydrocephalus? Acta Neurochir Suppl. 1998;71:331–3.PubMed
54.
go back to reference Czosnyka M, Whitehouse H, Smilewski P, Simac S, Pickard J. Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry. 1996;60:549–58.PubMedPubMedCentralCrossRef Czosnyka M, Whitehouse H, Smilewski P, Simac S, Pickard J. Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry. 1996;60:549–58.PubMedPubMedCentralCrossRef
55.
go back to reference Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. J Radiol. 2011;84:258–765.CrossRef Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. J Radiol. 2011;84:258–765.CrossRef
56.
go back to reference Miyake H, Ohta T, Kajimoto Y, Nagao K. New concept for the pressure setting of a programmable pressure valve and measurement of in vivo shunt flow performed using a microflowmeter. Technical Note. J Neurosurg. 2000;92:181–7.PubMedCrossRef Miyake H, Ohta T, Kajimoto Y, Nagao K. New concept for the pressure setting of a programmable pressure valve and measurement of in vivo shunt flow performed using a microflowmeter. Technical Note. J Neurosurg. 2000;92:181–7.PubMedCrossRef
57.
go back to reference Espay AJ, Da Prat G, Dwivedi A, Rodriguez-Porcel F, Vaughan J, Rosso M. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol. 2017;82(4):503–13.PubMedCrossRef Espay AJ, Da Prat G, Dwivedi A, Rodriguez-Porcel F, Vaughan J, Rosso M. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol. 2017;82(4):503–13.PubMedCrossRef
58.
go back to reference Muthupillai R, Lomas D, Rossman P, Greenleaf J, Manduca A, Ehman R. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269:1854–7.PubMedCrossRef Muthupillai R, Lomas D, Rossman P, Greenleaf J, Manduca A, Ehman R. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269:1854–7.PubMedCrossRef
59.
go back to reference Freimann F, Streitberger K, Klatt D, Lin K, McGlaughlin J, Braun J, et al. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus. Neuroradiology. 2012;54:189–96.PubMedCrossRef Freimann F, Streitberger K, Klatt D, Lin K, McGlaughlin J, Braun J, et al. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus. Neuroradiology. 2012;54:189–96.PubMedCrossRef
60.
go back to reference Linninger A, Tangen K, Hsu C, Frim D. Cerebrospinal fluid dynamics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech. 2016;48:219–57.CrossRef Linninger A, Tangen K, Hsu C, Frim D. Cerebrospinal fluid dynamics and its coupling to cerebrovascular dynamics. Annu Rev Fluid Mech. 2016;48:219–57.CrossRef
Metadata
Title
Opposing CSF hydrodynamic trends found in the cerebral aqueduct and prepontine cistern following shunt treatment in patients with normal pressure hydrocephalus
Authors
Robert B. Hamilton
Fabien Scalzo
Kevin Baldwin
Amber Dorn
Paul Vespa
Xiao Hu
Marvin Bergsneider
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2019
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-019-0122-0

Other articles of this Issue 1/2019

Fluids and Barriers of the CNS 1/2019 Go to the issue