Skip to main content
Log in

Pathogenesis of parkinson’s disease

Prospects of neuroprotective and restorative therapies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons of substantia nigra projecting to striatum. The cause of idiopathic PD is obscure, and most cases are sporadic. It is widely accepted that there is a genetic component of the disease, and the earlier the age of onset, the greater the likelihood that genetic factors play a dominant role. Oxidative stress of the substantia nigra seems to contain the driving force for neurodegeneration, leading to a destructive “toxic cycle.” The most prevalent therapy is levodopa administration, but it is not efficacious after several years of treatment. Several alternative therapies are currently being explored, such as neuroprotective approaches. Compounds with potentially neuroprotective efficacy such as selegiline, dopamine agonists, riluzole, creatine, and coenzyme Q10 are currently being tested. Trophic factors represent another class of neuroprotective compounds, but their intracerebral administration is difficult to achieve. In this respect, a potentially useful therapeutic approach is grafting cell vectors that release trophic molecules that stimulate regeneration in the damaged nigrostriatal system. Promising results have been obtained with fibroblasts engineered to secrete glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) or viral vectors expressing GDNF. We have tested the suitability of intrastriatal grafts of chromaffin cells obtained from the Zuckerkandl’s organ, which exert beneficial effects in parkinsonian rats, and release trophic factors such as GDNF and transforming growth factor-β1 (TGF-β1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piccini P., Burn D. J., Ceravolo R., Maraganore D., and Brooks D. J. (1999) The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic functions in twns. Ann. Neurol. 45, 577–582.

    Article  PubMed  CAS  Google Scholar 

  2. Martin W. E., Young W. I., and Anderson V. E. (1973) Parkinson’s disease: a genetic study. Brain 96, 495–506.

    Article  PubMed  CAS  Google Scholar 

  3. Lotharius J., Barg S., Wiekop P., Lundberg C., Raymon H. K., and Brundin P. (2002) Effect of mutant α-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J. Biol. Chem. 277, 38,884–38,894.

    Article  CAS  Google Scholar 

  4. Ishikawa A. and Tsuji S. (1996) Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology 47, 160–166.

    PubMed  CAS  Google Scholar 

  5. Shimura H., Hattori N., Kubo S., et al. (2000) Familial Parkinson’s disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genes 25, 302–305.

    Article  CAS  Google Scholar 

  6. Mouradian M. M. (2002) Recent advances in the genetics and pathogenesis of Parkinson’s disease. Neurology 58, 179–185.

    PubMed  Google Scholar 

  7. Seidler A., Hellenbrand W., Robra B. P., et al. (1996) Possible environmental, occupational, and other etiological factors for Parkinson’s disease: a case-control study in Germany. Neurology 46, 1275–1284.

    PubMed  CAS  Google Scholar 

  8. Semchuk K. M., Love E. J., and Lee R. G. (1991) Parkinson’s disease and exposure to rural environmental factors: a population based case-control study. Can. J. Neurol. Sci. 18, 279–286.

    PubMed  CAS  Google Scholar 

  9. Tipton K. F. and Singer T. P. (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 61, 1191–1206.

    Article  PubMed  CAS  Google Scholar 

  10. Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic parkinsonism in humans due to a product of a meperidine-analog synthesis. Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  11. Shapira A. H. V., Cooper J. M., and Dexter D. (1989) Mithocondrial complex I deficiency in Parkinson’s disease. Lancet 1, 1269.

    Article  Google Scholar 

  12. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., and Freeman B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87, 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  13. Sofic E., Riederer P., Heinsen H., Beckman H., Reynolds G. P., Hebenstreit G., and Youdim M. B. (1988) Increased iron (III) and total iron content in postmortem substantia nigra of parkinsonian brain. J. Neural Trans. 74, 199–205.

    Article  CAS  Google Scholar 

  14. Morris C. M. and Edwardson J. A. (1994) Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration 3, 277–282.

    PubMed  CAS  Google Scholar 

  15. Pearce R. K., Owen A., Daniel S., Jenner P., and Marsden C. D. (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J. Neural Transm. 104, 661–677.

    Article  PubMed  CAS  Google Scholar 

  16. Hunot S., Boissiere F., Faucheux B., Brugg B., Mouatt-Prigent A., Agid Y., and Hirsch E. C. (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72, 355–363.

    Article  PubMed  CAS  Google Scholar 

  17. Floor E. and Wetzel M. G. (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem. 70, 2682–2675.

    Google Scholar 

  18. Dexter D. T., Carter C. J., Wells F. R., Javoy-Agid F., Agid Y., Lees A., Jenner P., and Marsden C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  19. Alam Z. I., Zenner A., Daniel S. A., et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203.

    Article  PubMed  CAS  Google Scholar 

  20. Bucciantini M., Giannoni E., Chiti F., et al. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.

    Article  PubMed  CAS  Google Scholar 

  21. Hurtig H. I. Trojanowski J. Q., Galvin J., et al. (2000) α-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 1916–1921.

    PubMed  CAS  Google Scholar 

  22. Shermann M. Y. and Goldberg A. (1996) Involvement of molecular chaperones in intracellular protein breakdown. EXS 77, 57–78.

    Google Scholar 

  23. McNaught K. S. P. and Jenner P. (2002) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett. 326, 15–158.

    Article  Google Scholar 

  24. Hartley A., Cooper J. M., and Shapira A. H. (1993) Iron induced oxidative stress and mithocondrial dysfunction: relevance to Parkinson’s disease. Brain Res. 627, 349–353.

    Article  CAS  Google Scholar 

  25. Nagatsu T., Mogi M., Ichinose H., and Togari A. (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural Trans. 60, 277–290.

    Google Scholar 

  26. Hunot S. and Hirsch E. C. Neuroinflammatory processes in Parkinson’s disease. Ann. Neurol. 53, S49–S60.

  27. Bolam J. P., Freund T. F., Björklund A., Dunnett S. B., and Smith A. D. (1987) Synaptic input and local output of dopaminergic neurons in grafts that functionally reinnervate the host striatum. Exp. Brain Res. 68, 131–146.

    Article  PubMed  CAS  Google Scholar 

  28. Bohn M. C., Cupit L. C., Marciano F., and Gash D. M. (1987) Adrenal medullary grafts enhance recovery of striatal dopaminergic fibers. Science 237, 913–916.

    Article  PubMed  CAS  Google Scholar 

  29. Goetz C. G., Stebbins G. T., Klawans H. L., Holler W. C., Grossman R. G., Bakay R. A., and Penn R. D. (1991) United Parkinson Foundation neurotransplantation registry on adrenal medullary transplants presurgical, and 1-year and 2-year follow-up. Neurology 41, 1719–1722.

    PubMed  CAS  Google Scholar 

  30. Espejo E. F., Montoro R. J., Armengol J. A., and López-Barneo J. (1998) Cellular and functional recovery of parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20, 197–206.

    Article  PubMed  CAS  Google Scholar 

  31. Luquin M. R., Montoro R. J., Guillén J., Saldise L., Insausti R., Del Río J., and López-Barneo J. (1999) Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22, 743–750.

    Article  PubMed  CAS  Google Scholar 

  32. Lindvall O. (1997) Neural transplantation: a hope for patients with Parkinson’s disease? NeuroReport 8, iii-x.

    Article  PubMed  CAS  Google Scholar 

  33. Olanow C. W., Freeman T. B., and Kordower J. H. (1997) Neural transplantation as a therapy for Parkinson’s disease. Adv. Neurol. 74, 246–269.

    Google Scholar 

  34. Dunnett S. B. and Björklund A. (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399, A32-A39.

    Article  PubMed  CAS  Google Scholar 

  35. Brundin P. and Hagell P. (2001) The neurobiology of cell transplantation in Parkinson’s disease. Clin. Neurosci. Res. 1, 507–520.

    Article  CAS  Google Scholar 

  36. Freed C. R., Greene P. R., Breeze R. E., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719.

    Article  PubMed  CAS  Google Scholar 

  37. Ma Y., Feigin A., Dhawan V., et al. (2002) Diskynesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. 52, 628–634.

    Article  PubMed  Google Scholar 

  38. Yurek D. M. and Sladek J. R. (1990) Dopamine cell replacement: Parkinson’s disease. Annu. Rev. Neurosci. 13, 415–440.

    Article  PubMed  CAS  Google Scholar 

  39. Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, 72–84.

    Google Scholar 

  40. Cohen G., Pasik P., Cohen B., Leist A., Mytilineou C., and Yahr M. D. (1985) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monekys. Eur. J. Pharmacol. 106, 209–210.

    Article  Google Scholar 

  41. Elizan T. S., Yahr M. D., Moros D. A., Mendoza M. R., Pang S., and Bodian C. A. (1989) Selegiline use to prevent progression of Parkinson’s disease. Experience in 22 de novo patients. Arch. Neurol. 46, 1275–1279.

    PubMed  CAS  Google Scholar 

  42. Brannan T. and Yahr M. D. (1995) Comparatives tudy of selegiline plus l-dopa-carbidopa versus l-dopa-carnidopa alone in the treatment of Parkinson’s disease. Ann. Neurol. 37, 95–98.

    Article  PubMed  CAS  Google Scholar 

  43. The Parkinson’s Study Group. (1996) The impact of extended deprenyl and tocopherol treatment in Parkinson’s disease. Ann. Neurol. 39, 29–36.

    Article  Google Scholar 

  44. Shoulson I., Oakes D., Fahn S., et al. (Parkinson Study Group) (2002) The impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension. Ann. Neurol. 51, 604–612.

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa N., Tanaka K., Asanuma M., et al. (1994) Bromocriptine protects mice against 6-hydroxy-dopamine and scavenges hydroxyl free radical in vitro. Brain Res. 657, 207–213.

    Article  PubMed  CAS  Google Scholar 

  46. Muralikrishnan D. and Mohanakumar K. P. (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J. 12, 905–912.

    PubMed  CAS  Google Scholar 

  47. Olanow C. W. (1992) A rationale for dopamine agonists as primary therapy for Parkinson’s disease. Can. J. Neurosci. 19, 108–112.

    CAS  Google Scholar 

  48. Jenner P., Iravani M. M., Haldon C. O., et al. (2002) Pramipexole protects against MPTP-induced nigral dopaminergic cell loss in primates. Neurology 58, 494.

    Google Scholar 

  49. Whone A. L., Remy P., Davis M. R., et al. (2002) The REAL-PET study: slower progression in early Parkinson’s disease treated with ropinirole compared with l-dopa. Neurology 58, 82–83.

    Google Scholar 

  50. Araki T., Kumagai T., Tanaka K. Matsubara M., Kato H., Itoyama Y., and Imai Y. (2001) Neuroprotective effect of riluzole in MPTP-treated mice. Brain Res. 918, 176–181.

    Article  PubMed  CAS  Google Scholar 

  51. Obinu M. C., Reibaud M., Blanchard V., Moussaouis S., and Imperato A. (2002) Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov. Disord. 17, 13–19.

    Article  PubMed  Google Scholar 

  52. Matthews R. T., Ferrante R. J., Klivenyi P., et al. (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149.

    Article  PubMed  CAS  Google Scholar 

  53. Beal M. F., Matthews R. T., Tielemen A., and Shults C. W. (1998) Coenzyme Q10 attenuates the of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783, 109–114.

    Article  PubMed  CAS  Google Scholar 

  54. Shults C. W., Oakes D., Kieburtz K., et al. (Parkinson Study Group) (2002) Effect of coenzyme Q10 in early Parkinson’s disease: Evidence of slowing of the functional decline. Arch. Neurol. 59, 1541–1550.

    Article  PubMed  Google Scholar 

  55. Collier T. and Sorwell C. E. (1999) Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging 14, 261–287.

    Article  PubMed  CAS  Google Scholar 

  56. Hoffer B. J., Hoffman A., Bowenkamp K., et al. (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111.

    Article  PubMed  CAS  Google Scholar 

  57. Hebert M. A., Hoffer B. J., and Zhang Z. (1999) Functional effects of GDNF in normal and parkinsonian rats and monkeys, In: CNS Regeneration: Basic Science and Clinical Advances (Tuszynski M., and Kordower J. H., eds.), Academic Press, New York, pp. 419–436.

    Google Scholar 

  58. Kordower J. H., Palfi S., Chen E., et al. (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann. Neurol. 46, 419–424.

    Article  PubMed  CAS  Google Scholar 

  59. Kordower J. H. (2003) In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson’s disease. Ann. Neurol. 53, S120-S134.

    Article  PubMed  CAS  Google Scholar 

  60. Stocchi F. and Olanow C. W. (2003) Neuroprotection in Parkinson’s disease: clinical trials. Ann. Neurol. 53, S87-S99.

    Article  PubMed  CAS  Google Scholar 

  61. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., and Collins F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  62. Tomac A., Lindqvist E., Lin L. F., Ogren S. O., Young D., Hoffer B. J., and Olson L. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.

    Article  PubMed  CAS  Google Scholar 

  63. Beck K. D., Valverde J., Alexi T., et al. (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339–341.

    Article  PubMed  CAS  Google Scholar 

  64. Gash D. M., Zhang Z. M., and Gerhardt G. (1998) Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 44, G121-S125.

    Google Scholar 

  65. Tseng J. L., Baetge E. E., Zurn A. D., and Aebisher P. (1997) GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanisms not involving striatal dopamine. J. Neurosci. 17, 325–333.

    PubMed  CAS  Google Scholar 

  66. Levivier M., Przedborski S., Bencsics C., and Kang U. (1995) Intrastriatal transplantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci. 15, 7810–7820.

    PubMed  CAS  Google Scholar 

  67. Frim D. M., Uhler T. A., Galpern W. R., Beal M. F., Breakfield X. O., and Isacson O. (1994) Implanted fibroblasts genetically engineered to produce brain derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl. Acad. Sci. USA 91, 5104–5108.

    Article  PubMed  CAS  Google Scholar 

  68. Mandel R. J., Spratt S. K., Snyder R. O., and Leff S. E. (1997) Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc. Natl. Acad. Sci. USA 94, 14,083–14,088.

    CAS  Google Scholar 

  69. Kirik D., Rosenblad C., Björklund A., and Mandel R. J. (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci. 20, 4686–4700.

    PubMed  CAS  Google Scholar 

  70. Unsicker K., Suter-Crazzolara C., and Krieglstein K. (1996) Growth factor function in the development and maintenance of midbrain dopaminergic neurons: concepts, facts and prospects for TGF-β. Ciba Found. Symp. 196, 70–80.

    PubMed  CAS  Google Scholar 

  71. Krieglstein K., Henheik P., Farkas L., Jaszai J., Galter D., Krohn K., and Unsicker K. (1998) Glia cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral an CNS neurons. J. Neurosci. 18, 9822–9834.

    PubMed  CAS  Google Scholar 

  72. Schober A., Hertel R., Arumae U., et al. (1999) Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. J. Neurosci. 19, 2008–2015.

    PubMed  CAS  Google Scholar 

  73. Freed W. J., Morihisa J. M., Spoor E., Hoffer B. J., Olson L., Seiger A., and Wyatt R. J. (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behavior. Nature 292, 351–352.

    Article  PubMed  CAS  Google Scholar 

  74. Unsicker K. and Krieglstein K. (1995) Bovine chromaffin cells release a transforming growth factor-beta-like molecule contained within chromaffin granules. J. Neurochem. 65, 1423–1426.

    PubMed  Google Scholar 

  75. Unsicker K. and Krieglstein K. (1996) Growth factors in chromaffin cells. Prog. Neurobiol. 48, 307–324.

    Article  PubMed  CAS  Google Scholar 

  76. O’Connor D. T. (1999) Chromaffin cell mechanisms: understanding catecholamine storage and release. Trends Pharmacol. Sci. 20, 431–432.

    Article  CAS  Google Scholar 

  77. Toledo-Aral J. J., Mendez-Ferrer S., Pardal R., Echevarria M., Lopez-Barneo J. (2003) Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J. Neurosci. 23, 141–148.

    PubMed  CAS  Google Scholar 

  78. Ahonen M., Soinila S., and Joh T. H. (1987) Preand postnatal development of rat retroperitoneal paraganglia. J Auton. Nerv. Syst. 18, 11–120.

    Article  Google Scholar 

  79. Testut L. and Latarjet A. (1978) Tratado de anatomía humana. Salvat, Barcelona.

    Google Scholar 

  80. Espejo E. F., González-Albo M. C., Moraes J. P., El Banoua F., Flores J. A., and Caraballo I. (2001) Functional regeneration in a rat Parkinson’s model after intrastriatal grafts of GDNF and TGF-β1-expressing extra-adrenal chromaffin cells of the Zuckerkandl’s organ. J. Neuroscience 21, 9888–9895.

    CAS  Google Scholar 

  81. Bohn M. C., Goldstein M., and Black I. B. (1982) Expression of phenylethanolamine N-methyl-transferase in rat sympathetic ganglia and extra-adrenal chromaffin tissue. Develop. Biol. 89, 299–308.

    Article  PubMed  CAS  Google Scholar 

  82. Fornaguera J., Carey R. J., Huston J. P., and Schwarting R. K. W. (1994) Behavioral asymmetries and recovery in rats with different degrees of unilateral striatal dopamine depletion. Brain Res. 664, 178–188.

    Article  PubMed  CAS  Google Scholar 

  83. Schwarting R. K. W. and Huston J. P. (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research: analysis of functional deficits, recovery and treatments. Prog. Neurobiol. 50, 275–331.

    Article  PubMed  CAS  Google Scholar 

  84. Björklund A., Dunnett S. B., Stenevi U., Lewis M. E., and Iversen S. D. (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  Google Scholar 

  85. Brundin P., Strecker R. E., Londos E., and Björklund A. (1987) Dopamine neurons grafted unilaterally to the nucleus accumbens affect drug-induced circling and locomotion. Exp. Brain Res. 69, 183–194.

    Article  PubMed  CAS  Google Scholar 

  86. Brundin P., Karlsson J., Emgard M., et al. (2000) Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transpl. 9, 179–195.

    CAS  Google Scholar 

  87. Lyon R. A., Titeler M., Bigornia L., and Schneider A. S. (1987) D2 dopamine receptors on bovine chromaffin cell membranes: identification and characterization by [3H]N-methyl-spiperone binding. J. Neurochem. 48, 631–635.

    Article  PubMed  CAS  Google Scholar 

  88. Missale C., Castelleti L., Memo M., Carruba M. O., and Spano P. F. (1988) Identification of postsynaptic D1 and D2 dopamine receptors in cardiovascular system. J. Cardiovasc. Pharmacol. 11, 643–650.

    Article  PubMed  CAS  Google Scholar 

  89. Pupilli C., Lanzillotti R., Fiorelli G., et al. (1994) Dopamine D2 receptors gene expression and binding sites in adrenal medulla and pheocromocytoma. J. Clin. Endocrinol. Metab. 79, 56–61.

    Article  PubMed  CAS  Google Scholar 

  90. Unsicker K. (1993) The trophic cocktail made by adrenal chromaffin cells. Exp. Neurol. 123, 167–173.

    Article  PubMed  CAS  Google Scholar 

  91. Jennings C. (2000) Is neural cell transplantation ready for the clinic? Nature Medicine 6, 634.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Espejo, E. Pathogenesis of parkinson’s disease. Mol Neurobiol 29, 15–30 (2004). https://doi.org/10.1385/MN:29:1:15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:1:15

Index Entries

Navigation