Skip to main content
Top
Published in: Nutrition & Metabolism 1/2017

Open Access 01-12-2017 | Review

Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals

Author: Peter Bond

Published in: Nutrition & Metabolism | Issue 1/2017

Login to get access

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) has received much attention in the field of exercise physiology as a master regulator of skeletal muscle hypertrophy. The multiprotein complex is regulated by various signals such as growth factors, energy status, amino acids and mechanical stimuli. Importantly, the glycerophospholipid phosphatidic acid (PA) appears to play an important role in mTORC1 activation by mechanical stimulation. PA has been shown to modulate mTOR activity by direct binding to its FKBP12-rapamycin binding domain. Additionally, it has been suggested that exogenous PA activates mTORC1 via extracellular conversion to lysophosphatidic acid and subsequent binding to endothelial differentiation gene receptors on the cell surface. Recent trials have therefore evaluated the effects of PA supplementation in resistance-trained individuals on strength and body composition. As research in this field is rapidly evolving, this review attempts to provide a comprehensive overview of its biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals.
Literature
1.
go back to reference Karagounis LG, Hawley JA. Skeletal muscle: increasing the size of the locomotor cell. Int J Biochem Cell Biol. 2010;42(9):1376–9.CrossRefPubMed Karagounis LG, Hawley JA. Skeletal muscle: increasing the size of the locomotor cell. Int J Biochem Cell Biol. 2010;42(9):1376–9.CrossRefPubMed
2.
go back to reference Tesch P. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):132–4.CrossRef Tesch P. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):132–4.CrossRef
3.
go back to reference Churchward-Venne TA, Burd NA, Phillips SM. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab. 2012;9(1):1.CrossRef Churchward-Venne TA, Burd NA, Phillips SM. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab. 2012;9(1):1.CrossRef
4.
go back to reference Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International society of sports nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4(1):1.CrossRef Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International society of sports nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4(1):1.CrossRef
5.
go back to reference Bond P. Regulation of mtorc1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr. 2016;13(1):1.CrossRef Bond P. Regulation of mtorc1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr. 2016;13(1):1.CrossRef
7.
go back to reference Huang K, Fingar DC. Growing knowledge of the mtor signaling network. Semin Cell Dev Biol. 2014;36:79–90.CrossRefPubMed Huang K, Fingar DC. Growing knowledge of the mtor signaling network. Semin Cell Dev Biol. 2014;36:79–90.CrossRefPubMed
9.
go back to reference Ma XM, Blenis J. Molecular mechanisms of mtor-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.CrossRefPubMed Ma XM, Blenis J. Molecular mechanisms of mtor-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.CrossRefPubMed
10.
go back to reference Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein s6 kinase (s6k) within mtor signalling networks. Biochem J. 2012;441(1):1–21.CrossRefPubMed Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein s6 kinase (s6k) within mtor signalling networks. Biochem J. 2012;441(1):1–21.CrossRefPubMed
11.
12.
go back to reference Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. Pras40 is an insulin-regulated inhibitor of the mtorc1 protein kinase. Mol Cell. 2007;25(6):903–15.CrossRefPubMed Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM. Pras40 is an insulin-regulated inhibitor of the mtorc1 protein kinase. Mol Cell. 2007;25(6):903–15.CrossRefPubMed
13.
go back to reference Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ. Insulin-like growth factor-1 (igf-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin (pi3k/akt/mtor) pathway. J Biol Chem. 2005;280(4):2737–44.CrossRefPubMed Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, Lin HC, Yancopoulos GD, Glass DJ. Insulin-like growth factor-1 (igf-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin (pi3k/akt/mtor) pathway. J Biol Chem. 2005;280(4):2737–44.CrossRefPubMed
14.
go back to reference Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, et al. Amino acids mediate mtor/raptor signaling through activation of class 3 phosphatidylinositol 3oh-kinase. Proc Natl Acad Sci U S A. 2005;102(40):14238–43.CrossRefPubMedPubMedCentral Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, et al. Amino acids mediate mtor/raptor signaling through activation of class 3 phosphatidylinositol 3oh-kinase. Proc Natl Acad Sci U S A. 2005;102(40):14238–43.CrossRefPubMedPubMedCentral
15.
go back to reference Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, ESSER KA, et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase b-and growth factor-independent mechanism. Biochem J. 2004;380(3):795–804.CrossRefPubMedPubMedCentral Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, ESSER KA, et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase b-and growth factor-independent mechanism. Biochem J. 2004;380(3):795–804.CrossRefPubMedPubMedCentral
16.
go back to reference Inoki K, Zhu T, Guan K-L. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.CrossRefPubMed Inoki K, Zhu T, Guan K-L. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.CrossRefPubMed
17.
go back to reference O’Neil TK, Duffy L, Frey J, Hornberger T. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 2009;587(14):3691–701.CrossRefPubMedPubMedCentral O’Neil TK, Duffy L, Frey J, Hornberger T. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 2009;587(14):3691–701.CrossRefPubMedPubMedCentral
18.
go back to reference Yoon M-S, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-trna synthetase activates vps34 in amino acid-sensing mtorc1 signaling. Cell Rep. 2016;16(6):1510–7.CrossRefPubMedPubMedCentral Yoon M-S, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-trna synthetase activates vps34 in amino acid-sensing mtorc1 signaling. Cell Rep. 2016;16(6):1510–7.CrossRefPubMedPubMedCentral
19.
go back to reference Castro-Gomez P, Garcia-Serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA). 2015;101:41–51.CrossRef Castro-Gomez P, Garcia-Serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA). 2015;101:41–51.CrossRef
20.
go back to reference Yoon M-S, Rosenberger CL, Wu C, Truong N, Sweedler JV, Chen J. Rapid mitogenic regulation of the mtorc1 inhibitor, deptor, by phosphatidic acid. Mol Cell. 2015;58(3):549–56.CrossRefPubMedPubMedCentral Yoon M-S, Rosenberger CL, Wu C, Truong N, Sweedler JV, Chen J. Rapid mitogenic regulation of the mtorc1 inhibitor, deptor, by phosphatidic acid. Mol Cell. 2015;58(3):549–56.CrossRefPubMedPubMedCentral
21.
go back to reference Joy JM, Gundermann DM, Lowery RP, J¨ager R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutr Metab. 2014;11:1.CrossRef Joy JM, Gundermann DM, Lowery RP, J¨ager R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutr Metab. 2014;11:1.CrossRef
22.
go back to reference Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, et al. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):1.CrossRef Hoffman JR, Stout JR, Williams DR, Wells AJ, Fragala MS, Mangine GT, Gonzalez AM, Emerson NS, McCormack WP, Scanlon TC, et al. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):1.CrossRef
23.
go back to reference Escalante G, Alencar M, Haddock B, Harvey P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J Int Soc Sports Nutr. 2016;13(1):1.CrossRef Escalante G, Alencar M, Haddock B, Harvey P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J Int Soc Sports Nutr. 2016;13(1):1.CrossRef
24.
go back to reference Andre TL, Gann JJ, McKinley-Barnard SK, Song JJ, Willoughby DS. Eight weeks of phosphatidic acid supplementation in conjunction with resistance training does not differentially affect body composition and muscle strength in resistance-trained men. J Sports Sci Med. 2016;15:532–9.PubMedPubMedCentral Andre TL, Gann JJ, McKinley-Barnard SK, Song JJ, Willoughby DS. Eight weeks of phosphatidic acid supplementation in conjunction with resistance training does not differentially affect body composition and muscle strength in resistance-trained men. J Sports Sci Med. 2016;15:532–9.PubMedPubMedCentral
25.
go back to reference Gonzalez AM, Sell KM, Ghigiarelli JJ, Kelly CF, Shone EW, Accetta MR, Baum JB, Mangine GT. Effects of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men. Applied Physiology, Nutrition, and Metabolism (ja). 2017. doi:10.1139/apnm-2016-0564. Gonzalez AM, Sell KM, Ghigiarelli JJ, Kelly CF, Shone EW, Accetta MR, Baum JB, Mangine GT. Effects of phosphatidic acid supplementation on muscle thickness and strength in resistance-trained men. Applied Physiology, Nutrition, and Metabolism (ja). 2017. doi:10.​1139/​apnm-2016-0564.
26.
go back to reference Athenstaedt K, Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem. 1999;266(1):1–16.CrossRefPubMed Athenstaedt K, Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem. 1999;266(1):1–16.CrossRefPubMed
28.
go back to reference Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(11):2499–510.CrossRef Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(11):2499–510.CrossRef
29.
go back to reference Tang W, Yuan J, Chen X, Gu X, Luo K, Li J, Wan B, Wang Y, Yu L. Identification of a novel human lysophosphatidic acid acyltransferase, lpaat-theta, which activates mtor pathway. BMB Rep. 2006;39(5):626–35.CrossRef Tang W, Yuan J, Chen X, Gu X, Luo K, Li J, Wan B, Wang Y, Yu L. Identification of a novel human lysophosphatidic acid acyltransferase, lpaat-theta, which activates mtor pathway. BMB Rep. 2006;39(5):626–35.CrossRef
30.
go back to reference Biao L, Jiang YJ, Yaling Z, HATCH GM, et al. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by pparα in murine heart. Biochem J. 2005;385(2):469–77.CrossRef Biao L, Jiang YJ, Yaling Z, HATCH GM, et al. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by pparα in murine heart. Biochem J. 2005;385(2):469–77.CrossRef
31.
go back to reference Zhang C, Wendel AA, Keogh MR, Harris TE, Chen J, Coleman RA. Glycerolipid signals alter mtor complex 2 (mtorc2) to diminish insulin signaling. Proc Natl Acad Sci. 2012;109(5):1667–72.CrossRefPubMedPubMedCentral Zhang C, Wendel AA, Keogh MR, Harris TE, Chen J, Coleman RA. Glycerolipid signals alter mtor complex 2 (mtorc2) to diminish insulin signaling. Proc Natl Acad Sci. 2012;109(5):1667–72.CrossRefPubMedPubMedCentral
32.
go back to reference Hornberger T, Chu W, Mak Y, Hsiung J, Huang S, Chien S. The role of phospholipase d and phosphatidic acid in the mechanical activation of mtor signaling in skeletal muscle. Proc Natl Acad Sci U S A. 2006;103(12):4741–6.CrossRefPubMedPubMedCentral Hornberger T, Chu W, Mak Y, Hsiung J, Huang S, Chien S. The role of phospholipase d and phosphatidic acid in the mechanical activation of mtor signaling in skeletal muscle. Proc Natl Acad Sci U S A. 2006;103(12):4741–6.CrossRefPubMedPubMedCentral
33.
go back to reference You J-S, Lincoln HC, Kim C-R, Frey JW, Goodman CA, Zhong X-P, Hornberger TA. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mtor) signaling and skeletal muscle hypertrophy. J Biol Chem. 2014;289(3):1551–63.CrossRefPubMed You J-S, Lincoln HC, Kim C-R, Frey JW, Goodman CA, Zhong X-P, Hornberger TA. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mtor) signaling and skeletal muscle hypertrophy. J Biol Chem. 2014;289(3):1551–63.CrossRefPubMed
34.
go back to reference Su W, Yeku O, Olepu S, Genna A, Park J-S, Ren H, Du G, Gelb MH, Morris AJ, Frohman MA. 5-fluoro-2-indolyl des-chlorohalopemide (fipi), a phospholipase d pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol. 2009;75(3):437–46.CrossRefPubMed Su W, Yeku O, Olepu S, Genna A, Park J-S, Ren H, Du G, Gelb MH, Morris AJ, Frohman MA. 5-fluoro-2-indolyl des-chlorohalopemide (fipi), a phospholipase d pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol Pharmacol. 2009;75(3):437–46.CrossRefPubMed
35.
36.
go back to reference Foster DA, Salloum D, Menon D, Frias MA. Phospholipase d and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mtor). J Biol Chem. 2014;289(33):22583–8.CrossRefPubMedPubMedCentral Foster DA, Salloum D, Menon D, Frias MA. Phospholipase d and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mtor). J Biol Chem. 2014;289(33):22583–8.CrossRefPubMedPubMedCentral
37.
go back to reference Bobrovnikova-Marjon E, Pytel D, Riese MJ, Vaites LP, Singh N, Koretzky GA, Witze EE, Diehl JA. Perk utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate akt activation and promote adipocyte differentiation. Mol Cell Biol. 2012;32:2268–78. doi:10.1128/MCB.00063-12.CrossRefPubMedPubMedCentral Bobrovnikova-Marjon E, Pytel D, Riese MJ, Vaites LP, Singh N, Koretzky GA, Witze EE, Diehl JA. Perk utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate akt activation and promote adipocyte differentiation. Mol Cell Biol. 2012;32:2268–78. doi:10.​1128/​MCB.​00063-12.CrossRefPubMedPubMedCentral
38.
go back to reference M’erida I, Avila-Flores A, Merino E. Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 2008;409:1–18.CrossRef M’erida I, Avila-Flores A, Merino E. Diacylglycerol kinases: at the hub of cell signalling. Biochem J. 2008;409:1–18.CrossRef
39.
go back to reference Avila-Flores A, Santos T, Rinc’on E, M’erida I. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem. 2005;280(11):10091–9.CrossRefPubMed Avila-Flores A, Santos T, Rinc’on E, M’erida I. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem. 2005;280(11):10091–9.CrossRefPubMed
41.
go back to reference Gibellini F, Smith TK. The kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB life. 2010;62(6):414–28.CrossRefPubMed Gibellini F, Smith TK. The kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB life. 2010;62(6):414–28.CrossRefPubMed
42.
go back to reference Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2013;1831(3):543–54. Vance JE, Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2013;1831(3):543–54.
43.
go back to reference Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb J-M, Terrisse A-D, S’everin S, Gratacap M-P, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.CrossRefPubMed Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb J-M, Terrisse A-D, S’everin S, Gratacap M-P, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.CrossRefPubMed
45.
go back to reference Morita S-Y, Terada T. Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sc Rep. 2015;5:11737.CrossRef Morita S-Y, Terada T. Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sc Rep. 2015;5:11737.CrossRef
46.
go back to reference Tanaka T, Kassai A, Ohmoto M, Morito K, Kashiwada Y, Takaishi Y, Urikura M, Morishige J-I, Satouchi K, Tokumura A. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. J Agric Food Chem. 2012;60(16):4156–61.CrossRefPubMed Tanaka T, Kassai A, Ohmoto M, Morito K, Kashiwada Y, Takaishi Y, Urikura M, Morishige J-I, Satouchi K, Tokumura A. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. J Agric Food Chem. 2012;60(16):4156–61.CrossRefPubMed
47.
go back to reference Van den Bosch H, Postema N, De Haas G, Van Deenen L. On the positional specificity of phospholipase a from pancreas. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid. Metabolism. 1965;98(3):657–9. Van den Bosch H, Postema N, De Haas G, Van Deenen L. On the positional specificity of phospholipase a from pancreas. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid. Metabolism. 1965;98(3):657–9.
48.
go back to reference Purpura M, J¨ager R, Joy JM, Lowery RP, Moore JD, Wilson JM. Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lyso-phosphatidic acid molecular species in human plasma. J Int Soc Sports Nutr. 2012;10(1):22. Purpura M, J¨ager R, Joy JM, Lowery RP, Moore JD, Wilson JM. Effect of oral administration of soy-derived phosphatidic acid on concentrations of phosphatidic acid and lyso-phosphatidic acid molecular species in human plasma. J Int Soc Sports Nutr. 2012;10(1):22.
49.
go back to reference Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mtor signaling. Science. 2001;294(5548):1942–5.CrossRefPubMed Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mtor signaling. Science. 2001;294(5548):1942–5.CrossRefPubMed
50.
go back to reference Winter JN, Fox TE, Kester M, Jefferson LS, Kimball SR. Phosphatidic acid mediates activation of mtorc1 through the erk signaling pathway. Am J Phys Cell Phys. 2010;299(2):335–44.CrossRef Winter JN, Fox TE, Kester M, Jefferson LS, Kimball SR. Phosphatidic acid mediates activation of mtorc1 through the erk signaling pathway. Am J Phys Cell Phys. 2010;299(2):335–44.CrossRef
51.
go back to reference Veverka V, Crabbe T, Bird I, Lennie G, Muskett F, Taylor R, Carr M. Structural characterization of the interaction of mtor with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the frb domain in small molecule-mediated regulation of mtor. Oncogene. 2008;27(5):585–95.CrossRefPubMed Veverka V, Crabbe T, Bird I, Lennie G, Muskett F, Taylor R, Carr M. Structural characterization of the interaction of mtor with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the frb domain in small molecule-mediated regulation of mtor. Oncogene. 2008;27(5):585–95.CrossRefPubMed
52.
go back to reference Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y. Rheb activates mtor by antagonizing its endogenous inhibitor, fkbp38. Science. 2007;318(5852):977–80.CrossRefPubMed Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y. Rheb activates mtor by antagonizing its endogenous inhibitor, fkbp38. Science. 2007;318(5852):977–80.CrossRefPubMed
53.
go back to reference Yoon M-S, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mtorc1) kinase by displacing fk506 binding protein 38 (fkbp38) and exerting an allosteric effect. J Biol Chem. 2011;286(34):29568–74.CrossRefPubMedPubMedCentral Yoon M-S, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mtorc1) kinase by displacing fk506 binding protein 38 (fkbp38) and exerting an allosteric effect. J Biol Chem. 2011;286(34):29568–74.CrossRefPubMedPubMedCentral
54.
go back to reference Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of tsc2 by erk: implications for tuberous sclerosisand cancer pathogenesis. Cell. 2005;121(2):179–93.CrossRefPubMed Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of tsc2 by erk: implications for tuberous sclerosisand cancer pathogenesis. Cell. 2005;121(2):179–93.CrossRefPubMed
55.
go back to reference Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, Fingar DC, Roux PP. Erk1/2 phosphorylate raptor to promote ras-dependent activation of mtor complex 1 (mtorc1). J Biol Chem. 2011;286(1):567–77.CrossRefPubMed Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, Fingar DC, Roux PP. Erk1/2 phosphorylate raptor to promote ras-dependent activation of mtor complex 1 (mtorc1). J Biol Chem. 2011;286(1):567–77.CrossRefPubMed
56.
go back to reference You JS, Frey JW, Hornberger TA. Mechanical stimulation induces mtor signaling via an erk-independent mechanism: implications for a direct activation of mtor by phosphatidic acid. PLoS ONE. 2012;7(10):47258.CrossRef You JS, Frey JW, Hornberger TA. Mechanical stimulation induces mtor signaling via an erk-independent mechanism: implications for a direct activation of mtor by phosphatidic acid. PLoS ONE. 2012;7(10):47258.CrossRef
57.
go back to reference Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71(9):1657–71.CrossRefPubMed Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71(9):1657–71.CrossRefPubMed
58.
go back to reference Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.CrossRefPubMed Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8.CrossRefPubMed
59.
go back to reference Bodine SC, Baehr LM. Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):469–84.CrossRef Bodine SC, Baehr LM. Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):469–84.CrossRef
60.
go back to reference Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, N’emoz G. Phospholipase d regulates the size of skeletal muscle cells through the activation of mtor signaling. Cell Commun Signal. 2013;11:1.CrossRef Jaafar R, De Larichaudy J, Chanon S, Euthine V, Durand C, Naro F, Bertolino P, Vidal H, Lefai E, N’emoz G. Phospholipase d regulates the size of skeletal muscle cells through the activation of mtor signaling. Cell Commun Signal. 2013;11:1.CrossRef
61.
go back to reference Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of akt/pkb by the rictor-mtor complex. Science. 2005;307(5712):1098–101.CrossRefPubMed Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of akt/pkb by the rictor-mtor complex. Science. 2005;307(5712):1098–101.CrossRefPubMed
62.
go back to reference Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase bα. Curr Biol. 1997;7(4):261–9.CrossRefPubMed Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase bα. Curr Biol. 1997;7(4):261–9.CrossRefPubMed
63.
go back to reference Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a pkb/akt hydrophobic motif ser-473 kinase as dna-dependent protein kinase. J Biol Chem. 2004;279(39):41189–96.CrossRefPubMed Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a pkb/akt hydrophobic motif ser-473 kinase as dna-dependent protein kinase. J Biol Chem. 2004;279(39):41189–96.CrossRefPubMed
64.
go back to reference Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in foxo’s road. Sci STKE. 2003;2003(172):5–5. Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in foxo’s road. Sci STKE. 2003;2003(172):5–5.
65.
go back to reference Welsh AH, Knight EJ. “magnitude-based inference”: a statistical review. Med Sci Sports Exerc. 2015;47:874–84.CrossRefPubMed Welsh AH, Knight EJ. “magnitude-based inference”: a statistical review. Med Sci Sports Exerc. 2015;47:874–84.CrossRefPubMed
Metadata
Title
Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals
Author
Peter Bond
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2017
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/s12986-017-0166-6

Other articles of this Issue 1/2017

Nutrition & Metabolism 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.