Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Coronavirus | Research

Biological characterization of coronavirus noncanonical transcripts in vitro and in vivo

Authors: Ching-Hung Lin, BoJia Chen, Day-Yu Chao, Feng-Cheng Hsieh, Chien-Chen Lai, Wei-Chen Wang, Cheng-Yu Kuo, Chun-Chun Yang, Hsuan-Wei Hsu, Hon-Man-Herman Tam, Hung-Yi Wu

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

In addition to the well-known coronavirus genomes and subgenomic mRNAs, the existence of other coronavirus RNA species, which are collectively referred to as noncanonical transcripts, has been suggested; however, their biological characteristics have not yet been experimentally validated in vitro and in vivo.

Methods

To comprehensively determine the amounts, species and structures of noncanonical transcripts for bovine coronavirus in HRT-18 cells and mouse hepatitis virus A59, a mouse coronavirus, in mouse L cells and mice, nanopore direct RNA sequencing was employed. To experimentally validate the synthesis of noncanonical transcripts under regular infection, Northern blotting was performed. Both Northern blotting and nanopore direct RNA sequencing were also applied to examine the reproducibility of noncanonical transcripts. In addition, Northern blotting was also employed to determine the regulatory features of noncanonical transcripts under different infection conditions, including different cells, multiplicities of infection (MOIs) and coronavirus strains.

Results

In the current study, we (i) experimentally determined that coronavirus noncanonical transcripts were abundantly synthesized, (ii) classified the noncanonical transcripts into seven populations based on their structures and potential synthesis mechanisms, (iii) showed that the species and amounts of the noncanonical transcripts were reproducible during regular infection but regulated in altered infection environments, (iv) revealed that coronaviruses may employ various mechanisms to synthesize noncanonical transcripts, and (v) found that the biological characteristics of coronavirus noncanonical transcripts were similar between in vitro and in vivo conditions.

Conclusions

The biological characteristics of noncanonical coronavirus transcripts were experimentally validated for the first time. The identified features of noncanonical transcripts in terms of abundance, reproducibility and variety extend the current model for coronavirus gene expression. The capability of coronaviruses to regulate the species and amounts of noncanonical transcripts may contribute to the pathogenesis of coronaviruses during infection, posing potential challenges in disease control. Thus, the biology of noncanonical transcripts both in vitro and in vivo revealed here can provide a database for biological research, contributing to the development of antiviral strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xiao SY, Wu YJ, Liu H. Evolving status of the 2019 novel coronavirus infection: proposal of conventional serologic assays for disease diagnosis and infection monitoring. J Med Virol. 2020;92(5):464–7.CrossRefPubMedPubMedCentral Xiao SY, Wu YJ, Liu H. Evolving status of the 2019 novel coronavirus infection: proposal of conventional serologic assays for disease diagnosis and infection monitoring. J Med Virol. 2020;92(5):464–7.CrossRefPubMedPubMedCentral
2.
go back to reference Yang WJ, Cao QQ, Qin L, Wang XY, Cheng ZH, Pan AS, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang. China J Infection. 2020;80(4):388–93.CrossRef Yang WJ, Cao QQ, Qin L, Wang XY, Cheng ZH, Pan AS, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang. China J Infection. 2020;80(4):388–93.CrossRef
3.
go back to reference Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30.PubMed Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30.PubMed
4.
go back to reference Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117(1):17–37.CrossRefPubMed Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006;117(1):17–37.CrossRefPubMed
5.
go back to reference Vkovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Rev Microbiol. 2021;19(3):155–70.CrossRef Vkovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nature Rev Microbiol. 2021;19(3):155–70.CrossRef
6.
go back to reference Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol. 2005;287:31–55.PubMed Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol. 2005;287:31–55.PubMed
8.
go back to reference Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS ONE. 2013;8(12):e82176.CrossRefPubMedPubMedCentral Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS ONE. 2013;8(12):e82176.CrossRefPubMedPubMedCentral
9.
go back to reference Yang Y, Lyu T, Zhou R, He X, Ye K, Xie Q, et al. The antiviral and antitumor effects of defective interfering particles/genomes and their mechanisms. Front Microbiol. 2019;10:1852.CrossRefPubMedPubMedCentral Yang Y, Lyu T, Zhou R, He X, Ye K, Xie Q, et al. The antiviral and antitumor effects of defective interfering particles/genomes and their mechanisms. Front Microbiol. 2019;10:1852.CrossRefPubMedPubMedCentral
10.
go back to reference Levi LI, Rezelj VV, Henrion-Lacritick A, Erazo D, Boussier J, Vallet T, et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 2021;17(2):e1009110.CrossRefPubMedPubMedCentral Levi LI, Rezelj VV, Henrion-Lacritick A, Erazo D, Boussier J, Vallet T, et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 2021;17(2):e1009110.CrossRefPubMedPubMedCentral
11.
go back to reference Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26(2 Pt 2):145–54.CrossRefPubMed Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26(2 Pt 2):145–54.CrossRefPubMed
13.
go back to reference Chang RY, Hofmann MA, Sethna PB, Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol. 1994;68(12):8223–31.CrossRefPubMedPubMedCentral Chang RY, Hofmann MA, Sethna PB, Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. J Virol. 1994;68(12):8223–31.CrossRefPubMedPubMedCentral
14.
go back to reference Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5′- and 3′-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis. FEBS J. 2019;286(16):3222–39.CrossRefPubMedPubMedCentral Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5′- and 3′-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis. FEBS J. 2019;286(16):3222–39.CrossRefPubMedPubMedCentral
15.
go back to reference Tsai TL, Lin CH, Lin CN, Lo CY, Wu HY. Interplay between the Poly(A) Tail, Poly(A)-binding protein, and coronavirus nucleocapsid protein regulates gene expression of coronavirus and the host cell. J Virol. 2018;92(23):10–1128.CrossRef Tsai TL, Lin CH, Lin CN, Lo CY, Wu HY. Interplay between the Poly(A) Tail, Poly(A)-binding protein, and coronavirus nucleocapsid protein regulates gene expression of coronavirus and the host cell. J Virol. 2018;92(23):10–1128.CrossRef
16.
go back to reference Wu HY, Brian DA. 5′-proximal hot spot for an inducible positive-to-negative-strand template switch by coronavirus RNA-dependent RNA polymerase. J Virol. 2007;81(7):3206–15.CrossRefPubMedPubMedCentral Wu HY, Brian DA. 5′-proximal hot spot for an inducible positive-to-negative-strand template switch by coronavirus RNA-dependent RNA polymerase. J Virol. 2007;81(7):3206–15.CrossRefPubMedPubMedCentral
17.
go back to reference Brown CG, Nixon KS, Senanayake SD, Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol. 2007;81(14):7716–24.CrossRefPubMedPubMedCentral Brown CG, Nixon KS, Senanayake SD, Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol. 2007;81(14):7716–24.CrossRefPubMedPubMedCentral
18.
go back to reference Raman S, Bouma P, Williams GD, Brian DA. Stem-loop III in the 5’ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol. 2003;77(12):6720–30.CrossRefPubMedPubMedCentral Raman S, Bouma P, Williams GD, Brian DA. Stem-loop III in the 5’ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol. 2003;77(12):6720–30.CrossRefPubMedPubMedCentral
19.
go back to reference Spagnolo JF, Hogue BG. Host protein interactions with the 3’ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol. 2000;74(11):5053–65.CrossRefPubMedPubMedCentral Spagnolo JF, Hogue BG. Host protein interactions with the 3’ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol. 2000;74(11):5053–65.CrossRefPubMedPubMedCentral
20.
go back to reference Tompkins WA, Watrach AM, Schmale JD, Schultz RM, Harris JA. Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J Natl Cancer Inst. 1974;52(4):1101–10.CrossRefPubMed Tompkins WA, Watrach AM, Schmale JD, Schultz RM, Harris JA. Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J Natl Cancer Inst. 1974;52(4):1101–10.CrossRefPubMed
22.
go back to reference Lapps W, Hogue BG, Brian DA. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157(1):47–57.CrossRefPubMed Lapps W, Hogue BG, Brian DA. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157(1):47–57.CrossRefPubMed
23.
go back to reference Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRefPubMed Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRefPubMed
24.
go back to reference Lin CH, Yang CY, Wang ML, Ou SC, Lo CY, Tsai TL, et al. Effects of coronavirus persistence on the genome structure and subsequent gene expression. Pathogenicity adaptation capability. Cells-Basel. 2020;9(10):2322.CrossRef Lin CH, Yang CY, Wang ML, Ou SC, Lo CY, Tsai TL, et al. Effects of coronavirus persistence on the genome structure and subsequent gene expression. Pathogenicity adaptation capability. Cells-Basel. 2020;9(10):2322.CrossRef
25.
go back to reference Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26(2):145–54.CrossRefPubMed Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26(2):145–54.CrossRefPubMed
27.
go back to reference Miller WA, Koev G. Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology. 2000;273(1):1–8.CrossRefPubMed Miller WA, Koev G. Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology. 2000;273(1):1–8.CrossRefPubMed
28.
go back to reference Smits SL, van Vliet AL, Segeren K, el Azzouzi H, van Essen M, de Groot RJ. Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter. J Virol. 2005;79(13):8275–81.CrossRefPubMedPubMedCentral Smits SL, van Vliet AL, Segeren K, el Azzouzi H, van Essen M, de Groot RJ. Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter. J Virol. 2005;79(13):8275–81.CrossRefPubMedPubMedCentral
29.
go back to reference van Vliet AL, Smits SL, Rottier PJ, de Groot RJ. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J. 2002;21(23):6571–80.CrossRefPubMedPubMedCentral van Vliet AL, Smits SL, Rottier PJ, de Groot RJ. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J. 2002;21(23):6571–80.CrossRefPubMedPubMedCentral
30.
go back to reference Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20–9.CrossRefPubMed Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20–9.CrossRefPubMed
31.
go back to reference Wu HY, Ozdarendeli A, Brian DA. Bovine coronavirus 5′-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. J Virol. 2006;80(5):2183–93.CrossRefPubMedPubMedCentral Wu HY, Ozdarendeli A, Brian DA. Bovine coronavirus 5′-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. J Virol. 2006;80(5):2183–93.CrossRefPubMedPubMedCentral
32.
go back to reference Pasternak AO, Spaan WJ, Snijder EJ. Nidovirus transcription: how to make sense…? J Gen Virol. 2006;87(Pt 6):1403–21.CrossRefPubMed Pasternak AO, Spaan WJ, Snijder EJ. Nidovirus transcription: how to make sense…? J Gen Virol. 2006;87(Pt 6):1403–21.CrossRefPubMed
33.
go back to reference Hofmann MA, Sethna PB, Brian DA. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J Virol. 1990;64(9):4108–14.CrossRefPubMedPubMedCentral Hofmann MA, Sethna PB, Brian DA. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J Virol. 1990;64(9):4108–14.CrossRefPubMedPubMedCentral
34.
go back to reference Shapka N, Nagy PD. The AU-rich RNA recombination hot spot sequence of Brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol. 2004;78(5):2288–300.CrossRefPubMedPubMedCentral Shapka N, Nagy PD. The AU-rich RNA recombination hot spot sequence of Brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol. 2004;78(5):2288–300.CrossRefPubMedPubMedCentral
35.
go back to reference Fu KS, Baric RS. Evidence for variable rates of recombination in the Mhv genome. Virology. 1992;189(1):88–102.CrossRefPubMed Fu KS, Baric RS. Evidence for variable rates of recombination in the Mhv genome. Virology. 1992;189(1):88–102.CrossRefPubMed
36.
go back to reference Fu KS, Baric RS. Map locations of mouse hepatitis-virus temperature-sensitive mutants—confirmation of variable rates of recombination. J Virol. 1994;68(11):7458–66.CrossRefPubMedPubMedCentral Fu KS, Baric RS. Map locations of mouse hepatitis-virus temperature-sensitive mutants—confirmation of variable rates of recombination. J Virol. 1994;68(11):7458–66.CrossRefPubMedPubMedCentral
Metadata
Title
Biological characterization of coronavirus noncanonical transcripts in vitro and in vivo
Authors
Ching-Hung Lin
BoJia Chen
Day-Yu Chao
Feng-Cheng Hsieh
Chien-Chen Lai
Wei-Chen Wang
Cheng-Yu Kuo
Chun-Chun Yang
Hsuan-Wei Hsu
Hon-Man-Herman Tam
Hung-Yi Wu
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Coronavirus
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02201-0

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.