Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Research

Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods

Authors: Hongzhao Li, Greg Smith, Melissa Goolia, Peter Marszal, Bradley S. Pickering

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2 and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Appendix
Available only for authorised users
Literature
2.
go back to reference Mehand MS, Millett P, Al-Shorbaji F, Roth C, Kieny MP, Murgue B. World health organization methodology to prioritize emerging infectious diseases in need of research and development. Emerg Infect Dis. 2018;24:e171427.PubMedPubMedCentralCrossRef Mehand MS, Millett P, Al-Shorbaji F, Roth C, Kieny MP, Murgue B. World health organization methodology to prioritize emerging infectious diseases in need of research and development. Emerg Infect Dis. 2018;24:e171427.PubMedPubMedCentralCrossRef
3.
go back to reference Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–89.PubMedCrossRef Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–89.PubMedCrossRef
4.
go back to reference Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O, Cross RW, Abelson DM, Moyer CL, Mishra AK, Aguilan JT, et al. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell. 2021;184:3486-3501 e3421.CrossRef Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O, Cross RW, Abelson DM, Moyer CL, Mishra AK, Aguilan JT, et al. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell. 2021;184:3486-3501 e3421.CrossRef
5.
go back to reference Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, Mirazimi A, Weber F, Papa A. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018;150:137–47.PubMedCrossRef Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, Mirazimi A, Weber F, Papa A. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018;150:137–47.PubMedCrossRef
7.
go back to reference Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avsic-Zupanc T, Ballinger MJ, Bente DA, Beer M, Bergeron E, Blair CD, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019;164:1949–65.PubMedPubMedCentralCrossRef Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avsic-Zupanc T, Ballinger MJ, Bente DA, Beer M, Bergeron E, Blair CD, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019;164:1949–65.PubMedPubMedCentralCrossRef
8.
go back to reference Li H, Bello A, Smith G, Kielich DMS, Strong JE, Pickering BS. Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2022;16:e0010285.PubMedPubMedCentralCrossRef Li H, Bello A, Smith G, Kielich DMS, Strong JE, Pickering BS. Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2022;16:e0010285.PubMedPubMedCentralCrossRef
9.
go back to reference Conger NG, Paolino KM, Osborn EC, Rusnak JM, Gunther S, Pool J, Rollin PE, Allan PF, Schmidt-Chanasit J, Rieger T, Kortepeter MG. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21:23–31.PubMedPubMedCentralCrossRef Conger NG, Paolino KM, Osborn EC, Rusnak JM, Gunther S, Pool J, Rollin PE, Allan PF, Schmidt-Chanasit J, Rieger T, Kortepeter MG. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21:23–31.PubMedPubMedCentralCrossRef
10.
go back to reference Mild M, Simon M, Albert J, Mirazimi A. Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2010;91:199–207.PubMedCrossRef Mild M, Simon M, Albert J, Mirazimi A. Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2010;91:199–207.PubMedCrossRef
11.
go back to reference Grandi G, Chitimia-Dobler L, Choklikitumnuey P, Strube C, Springer A, Albihn A, Jaenson TGT, Omazic A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020;11:101403.PubMedCrossRef Grandi G, Chitimia-Dobler L, Choklikitumnuey P, Strube C, Springer A, Albihn A, Jaenson TGT, Omazic A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020;11:101403.PubMedCrossRef
12.
go back to reference Andersen LK, Davis MD. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force. Int J Dermatol. 2017;56:252–9.PubMedCrossRef Andersen LK, Davis MD. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force. Int J Dermatol. 2017;56:252–9.PubMedCrossRef
13.
go back to reference Pavel STI, Yetiskin H, Kalkan A, Ozdarendeli A. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model. PLoS Negl Trop Dis. 2020;14:e0008834.PubMedPubMedCentralCrossRef Pavel STI, Yetiskin H, Kalkan A, Ozdarendeli A. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model. PLoS Negl Trop Dis. 2020;14:e0008834.PubMedPubMedCentralCrossRef
14.
go back to reference Berber E, Canakoglu N, Tonbak S, Ozdarendeli A. Development of a protective inactivated vaccine against Crimean-Congo hemorrhagic fever infection. Heliyon. 2021;7:e08161.PubMedPubMedCentralCrossRef Berber E, Canakoglu N, Tonbak S, Ozdarendeli A. Development of a protective inactivated vaccine against Crimean-Congo hemorrhagic fever infection. Heliyon. 2021;7:e08161.PubMedPubMedCentralCrossRef
15.
go back to reference Dai S, Wu Q, Wu X, Peng C, Liu J, Tang S, Zhang T, Deng F, Shen S. Differential cell line susceptibility to crimean-congo hemorrhagic fever virus. Front Cell Infect Microbiol. 2021;11:648077.PubMedPubMedCentralCrossRef Dai S, Wu Q, Wu X, Peng C, Liu J, Tang S, Zhang T, Deng F, Shen S. Differential cell line susceptibility to crimean-congo hemorrhagic fever virus. Front Cell Infect Microbiol. 2021;11:648077.PubMedPubMedCentralCrossRef
16.
go back to reference Appelberg S, John L, Pardi N, Vegvari A, Bereczky S, Ahlen G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, et al. Nucleoside-modified mRNA vaccines protect IFNAR(-/-) mice against crimean-congo hemorrhagic fever virus infection. J Virol. 2022;96:e0156821.PubMedCrossRef Appelberg S, John L, Pardi N, Vegvari A, Bereczky S, Ahlen G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, et al. Nucleoside-modified mRNA vaccines protect IFNAR(-/-) mice against crimean-congo hemorrhagic fever virus infection. J Virol. 2022;96:e0156821.PubMedCrossRef
17.
go back to reference Golden JW, Zeng X, Cline CR, Smith JM, Daye SP, Carey BD, Blancett CD, Shoemaker CJ, Liu J, Fitzpatrick CJ, et al. The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathog. 2022;18:e1010485.PubMedPubMedCentralCrossRef Golden JW, Zeng X, Cline CR, Smith JM, Daye SP, Carey BD, Blancett CD, Shoemaker CJ, Liu J, Fitzpatrick CJ, et al. The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathog. 2022;18:e1010485.PubMedPubMedCentralCrossRef
18.
go back to reference Hua BL, Scholte FE, Ohlendorf V, Kopp A, Marklewitz M, Drosten C, Nichol ST, Spiropoulou C, Junglen S, Bergeron E. A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. Elife. 2020;9:e50999.PubMedPubMedCentralCrossRef Hua BL, Scholte FE, Ohlendorf V, Kopp A, Marklewitz M, Drosten C, Nichol ST, Spiropoulou C, Junglen S, Bergeron E. A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. Elife. 2020;9:e50999.PubMedPubMedCentralCrossRef
19.
go back to reference Mishra AK, Moyer CL, Abelson DM, Deer DJ, El Omari K, Duman R, Lobel L, Lutwama JJ, Dye JM, Wagner A, et al: Structure and characterization of crimean-congo hemorrhagic fever virus GP38. J Virol 2020, 94. Mishra AK, Moyer CL, Abelson DM, Deer DJ, El Omari K, Duman R, Lobel L, Lutwama JJ, Dye JM, Wagner A, et al: Structure and characterization of crimean-congo hemorrhagic fever virus GP38. J Virol 2020, 94.
20.
go back to reference Smith DR, Shoemaker CJ, Zeng X, Garrison AR, Golden JW, Schellhase CW, Pratt W, Rossi F, Fitzpatrick CJ, Shamblin J, et al. Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog. 2019;15:e1008050.PubMedPubMedCentralCrossRef Smith DR, Shoemaker CJ, Zeng X, Garrison AR, Golden JW, Schellhase CW, Pratt W, Rossi F, Fitzpatrick CJ, Shamblin J, et al. Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog. 2019;15:e1008050.PubMedPubMedCentralCrossRef
21.
go back to reference Golden JW, Shoemaker CJ, Lindquist ME, Zeng X, Daye SP, Williams JA, Liu J, Coffin KM, Olschner S, Flusin O, et al. GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Sci Adv. 2019;5:eaaw9535.PubMedPubMedCentralCrossRef Golden JW, Shoemaker CJ, Lindquist ME, Zeng X, Daye SP, Williams JA, Liu J, Coffin KM, Olschner S, Flusin O, et al. GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Sci Adv. 2019;5:eaaw9535.PubMedPubMedCentralCrossRef
22.
go back to reference Rodriguez SE, Cross RW, Fenton KA, Bente DA, Mire CE, Geisbert TW. Vesicular stomatitis virus-based vaccine protects mice against Crimean-Congo hemorrhagic fever. Sci Rep. 2019;9:7755.PubMedPubMedCentralCrossRef Rodriguez SE, Cross RW, Fenton KA, Bente DA, Mire CE, Geisbert TW. Vesicular stomatitis virus-based vaccine protects mice against Crimean-Congo hemorrhagic fever. Sci Rep. 2019;9:7755.PubMedPubMedCentralCrossRef
23.
go back to reference Cajimat MNB, Rodriguez SE, Schuster IUE, Swetnam DM, Ksiazek TG, Habela MA, Negredo AI, Estrada-Pena A, Barrett ADT, Bente DA. Genomic characterization of Crimean-Congo hemorrhagic fever virus in Hyalomma Tick from Spain, 2014. Vector Borne Zoonotic Dis. 2017;17:714–9.PubMedPubMedCentralCrossRef Cajimat MNB, Rodriguez SE, Schuster IUE, Swetnam DM, Ksiazek TG, Habela MA, Negredo AI, Estrada-Pena A, Barrett ADT, Bente DA. Genomic characterization of Crimean-Congo hemorrhagic fever virus in Hyalomma Tick from Spain, 2014. Vector Borne Zoonotic Dis. 2017;17:714–9.PubMedPubMedCentralCrossRef
24.
go back to reference Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron E, Keck JG, et al. Crimean-Congo hemorrhagic fever in humanized mice reveals glial cells as primary targets of neurological infection. J Infect Dis. 2017;216:1386–97.PubMedCrossRef Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron E, Keck JG, et al. Crimean-Congo hemorrhagic fever in humanized mice reveals glial cells as primary targets of neurological infection. J Infect Dis. 2017;216:1386–97.PubMedCrossRef
25.
go back to reference Hinkula J, Devignot S, Akerstrom S, Karlberg H, Wattrang E, Bereczky S, Mousavi-Jazi M, Risinger C, Lindegren G, Vernersson C, et al: Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol 2017, 91. Hinkula J, Devignot S, Akerstrom S, Karlberg H, Wattrang E, Bereczky S, Mousavi-Jazi M, Risinger C, Lindegren G, Vernersson C, et al: Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol 2017, 91.
26.
go back to reference Dowall SD, Graham VA, Rayner E, Hunter L, Watson R, Taylor I, Rule A, Carroll MW, Hewson R. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS ONE. 2016;11:e0156637.PubMedPubMedCentralCrossRef Dowall SD, Graham VA, Rayner E, Hunter L, Watson R, Taylor I, Rule A, Carroll MW, Hewson R. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS ONE. 2016;11:e0156637.PubMedPubMedCentralCrossRef
27.
go back to reference Ferraris O, Moroso M, Pernet O, Emonet S, Ferrier Rembert A, Paranhos-Baccala G, Peyrefitte CN. Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules. Antiviral Res. 2015;118:75–81.PubMedPubMedCentralCrossRef Ferraris O, Moroso M, Pernet O, Emonet S, Ferrier Rembert A, Paranhos-Baccala G, Peyrefitte CN. Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules. Antiviral Res. 2015;118:75–81.PubMedPubMedCentralCrossRef
28.
go back to reference Foldes K, Aligholipour Farzani T, Ergunay K, Ozkul A: Differential growth characteristics of Crimean-Congo Hemorrhagic fever virus in kidney cells of human and Bovine Origin. Viruses 2020, 12. Foldes K, Aligholipour Farzani T, Ergunay K, Ozkul A: Differential growth characteristics of Crimean-Congo Hemorrhagic fever virus in kidney cells of human and Bovine Origin. Viruses 2020, 12.
29.
go back to reference Aligholipour Farzani T, Foldes K, Hanifehnezhad A, Yener Ilce B, Bilge Dagalp S, Amirzadeh Khiabani N, Ergunay K, Alkan F, Karaoglu T, Bodur H, Ozkul A. Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNalpha/beta/gammaR-/- Mice Models. Viruses. 2019;11:237.PubMedPubMedCentralCrossRef Aligholipour Farzani T, Foldes K, Hanifehnezhad A, Yener Ilce B, Bilge Dagalp S, Amirzadeh Khiabani N, Ergunay K, Alkan F, Karaoglu T, Bodur H, Ozkul A. Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNalpha/beta/gammaR-/- Mice Models. Viruses. 2019;11:237.PubMedPubMedCentralCrossRef
30.
go back to reference Hawman DW, Meade-White K, Leventhal S, Appelberg S, Ahlen G, Nikouyan N, Clancy C, Smith B, Hanley P, Lovaglio J, et al: Accelerated DNA vaccine regimen provides protection against Crimean-Congo hemorrhagic fever virus challenge in a macaque model. Mol Ther 2022. Hawman DW, Meade-White K, Leventhal S, Appelberg S, Ahlen G, Nikouyan N, Clancy C, Smith B, Hanley P, Lovaglio J, et al: Accelerated DNA vaccine regimen provides protection against Crimean-Congo hemorrhagic fever virus challenge in a macaque model. Mol Ther 2022.
31.
go back to reference Mears MC, Rodriguez SE, Schmitz KS, Padilla A, Biswas S, Cajimat MNB, Mire CE, Welch SR, Bergeron E, Alabi CA, et al. Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2022;207:105401.PubMedCrossRef Mears MC, Rodriguez SE, Schmitz KS, Padilla A, Biswas S, Cajimat MNB, Mire CE, Welch SR, Bergeron E, Alabi CA, et al. Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2022;207:105401.PubMedCrossRef
32.
go back to reference Leventhal SS, Meade-White K, Rao D, Haddock E, Leung J, Scott D, Archer J, Randall S, Erasmus JH, Feldmann H, Hawman DW. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine. 2022;82:104188.PubMedPubMedCentralCrossRef Leventhal SS, Meade-White K, Rao D, Haddock E, Leung J, Scott D, Archer J, Randall S, Erasmus JH, Feldmann H, Hawman DW. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine. 2022;82:104188.PubMedPubMedCentralCrossRef
33.
go back to reference Neogi U, Elaldi N, Appelberg S, Ambikan A, Kennedy E, Dowall S, Bagci BK, Gupta S, Rodriguez JE, Svensson-Akusjarvi S, et al: Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. Elife 2022, 11. Neogi U, Elaldi N, Appelberg S, Ambikan A, Kennedy E, Dowall S, Bagci BK, Gupta S, Rodriguez JE, Svensson-Akusjarvi S, et al: Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. Elife 2022, 11.
34.
go back to reference Salvati MV, Salaris C, Monteil V, Del Vecchio C, Palu G, Parolin C, Calistri A, Bell-Sakyi L, Mirazimi A, Salata C. Virus-derived DNA forms mediate the persistent infection of tick cells by Hazara virus and Crimean-Congo Hemorrhagic fever virus. J Virol. 2021;95:e0163821.PubMedCrossRef Salvati MV, Salaris C, Monteil V, Del Vecchio C, Palu G, Parolin C, Calistri A, Bell-Sakyi L, Mirazimi A, Salata C. Virus-derived DNA forms mediate the persistent infection of tick cells by Hazara virus and Crimean-Congo Hemorrhagic fever virus. J Virol. 2021;95:e0163821.PubMedCrossRef
35.
go back to reference Hawman DW, Meade-White K, Leventhal S, Feldmann F, Okumura A, Smith B, Scott D, Feldmann H. Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. Elife. 2021;10:e63906.PubMedPubMedCentralCrossRef Hawman DW, Meade-White K, Leventhal S, Feldmann F, Okumura A, Smith B, Scott D, Feldmann H. Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. Elife. 2021;10:e63906.PubMedPubMedCentralCrossRef
36.
go back to reference Hawman DW, Ahlen G, Appelberg KS, Meade-White K, Hanley PW, Scott D, Monteil V, Devignot S, Okumura A, Weber F, et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat Microbiol. 2021;6:187–95.PubMedCrossRef Hawman DW, Ahlen G, Appelberg KS, Meade-White K, Hanley PW, Scott D, Monteil V, Devignot S, Okumura A, Weber F, et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat Microbiol. 2021;6:187–95.PubMedCrossRef
37.
go back to reference Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis. 2020;14:e0008637.PubMedPubMedCentralCrossRef Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis. 2020;14:e0008637.PubMedPubMedCentralCrossRef
38.
go back to reference Rodriguez SE, McAuley AJ, Gargili A, Bente DA. Interactions of human dermal dendritic cells and langerhans cells treated with Hyalomma tick Saliva with Crimean-Congo Hemorrhagic fever virus. Viruses. 2018;10:381.PubMedPubMedCentralCrossRef Rodriguez SE, McAuley AJ, Gargili A, Bente DA. Interactions of human dermal dendritic cells and langerhans cells treated with Hyalomma tick Saliva with Crimean-Congo Hemorrhagic fever virus. Viruses. 2018;10:381.PubMedPubMedCentralCrossRef
39.
go back to reference Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron E, Spiropoulou CF. Identification of 2’-deoxy-2’-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res. 2017;147:91–9.PubMedPubMedCentralCrossRef Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron E, Spiropoulou CF. Identification of 2’-deoxy-2’-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res. 2017;147:91–9.PubMedPubMedCentralCrossRef
40.
go back to reference Zivcec M, Guerrero LIW, Albarino CG, Bergeron E, Nichol ST, Spiropoulou CF. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2017;146:112–20.PubMedPubMedCentralCrossRef Zivcec M, Guerrero LIW, Albarino CG, Bergeron E, Nichol ST, Spiropoulou CF. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2017;146:112–20.PubMedPubMedCentralCrossRef
41.
go back to reference Berber E, Canakoglu N, Yoruk MD, Tonbak S, Aktas M, Ertek M, Bolat Y, Kalkan A, Ozdarendeli A. Application of the pseudo-plaque assay for detection and titration of Crimean-Congo hemorrhagic fever virus. J Virol Methods. 2013;187:26–31.PubMedCrossRef Berber E, Canakoglu N, Yoruk MD, Tonbak S, Aktas M, Ertek M, Bolat Y, Kalkan A, Ozdarendeli A. Application of the pseudo-plaque assay for detection and titration of Crimean-Congo hemorrhagic fever virus. J Virol Methods. 2013;187:26–31.PubMedCrossRef
42.
go back to reference Lombe BP, Miyamoto H, Saito T, Yoshida R, Manzoor R, Kajihara M, Shimojima M, Fukushi S, Morikawa S, Yoshikawa T, et al. Purification of Crimean-Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Sci Rep. 2021;11:2324.PubMedPubMedCentralCrossRef Lombe BP, Miyamoto H, Saito T, Yoshida R, Manzoor R, Kajihara M, Shimojima M, Fukushi S, Morikawa S, Yoshikawa T, et al. Purification of Crimean-Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Sci Rep. 2021;11:2324.PubMedPubMedCentralCrossRef
44.
go back to reference Peyrefitte CN, Perret M, Garcia S, Rodrigues R, Bagnaud A, Lacote S, Crance JM, Vernet G, Garin D, Bouloy M, Paranhos-Baccala G. Differential activation profiles of Crimean-Congo hemorrhagic fever virus- and Dugbe virus-infected antigen-presenting cells. J Gen Virol. 2010;91:189–98.PubMedCrossRef Peyrefitte CN, Perret M, Garcia S, Rodrigues R, Bagnaud A, Lacote S, Crance JM, Vernet G, Garin D, Bouloy M, Paranhos-Baccala G. Differential activation profiles of Crimean-Congo hemorrhagic fever virus- and Dugbe virus-infected antigen-presenting cells. J Gen Virol. 2010;91:189–98.PubMedCrossRef
45.
go back to reference Rodrigues R, Paranhos-Baccala G, Vernet G, Peyrefitte CN. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk. PLoS ONE. 2012;7:e29712.PubMedPubMedCentralCrossRef Rodrigues R, Paranhos-Baccala G, Vernet G, Peyrefitte CN. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk. PLoS ONE. 2012;7:e29712.PubMedPubMedCentralCrossRef
46.
go back to reference Connolly-Andersen AM, Moll G, Andersson C, Akerstrom S, Karlberg H, Douagi I, Mirazimi A. Crimean-Congo hemorrhagic fever virus activates endothelial cells. J Virol. 2011;85:7766–74.PubMedPubMedCentralCrossRef Connolly-Andersen AM, Moll G, Andersson C, Akerstrom S, Karlberg H, Douagi I, Mirazimi A. Crimean-Congo hemorrhagic fever virus activates endothelial cells. J Virol. 2011;85:7766–74.PubMedPubMedCentralCrossRef
47.
go back to reference Canakoglu N, Berber E, Tonbak S, Ertek M, Sozdutmaz I, Aktas M, Kalkan A, Ozdarendeli A. Immunization of knock-out alpha/beta interferon receptor mice against high lethal dose of Crimean-Congo hemorrhagic fever virus with a cell culture based vaccine. PLoS Negl Trop Dis. 2015;9:e0003579.PubMedPubMedCentralCrossRef Canakoglu N, Berber E, Tonbak S, Ertek M, Sozdutmaz I, Aktas M, Kalkan A, Ozdarendeli A. Immunization of knock-out alpha/beta interferon receptor mice against high lethal dose of Crimean-Congo hemorrhagic fever virus with a cell culture based vaccine. PLoS Negl Trop Dis. 2015;9:e0003579.PubMedPubMedCentralCrossRef
48.
go back to reference Monteil V, Salata C, Appelberg S, Mirazimi A. Hazara virus and Crimean-Congo Hemorrhagic Fever Virus show a different pattern of entry in fully-polarized Caco-2 cell line. PLoS Negl Trop Dis. 2020;14:e0008863.PubMedPubMedCentralCrossRef Monteil V, Salata C, Appelberg S, Mirazimi A. Hazara virus and Crimean-Congo Hemorrhagic Fever Virus show a different pattern of entry in fully-polarized Caco-2 cell line. PLoS Negl Trop Dis. 2020;14:e0008863.PubMedPubMedCentralCrossRef
49.
go back to reference Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12:e0006628.PubMedPubMedCentralCrossRef Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12:e0006628.PubMedPubMedCentralCrossRef
50.
go back to reference Ranadheera C, Valcourt EJ, Warner BM, Poliquin G, Rosenke K, Frost K, Tierney K, Saturday G, Miao J, Westover JB, et al. Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Sci Rep. 2020;10:12378.PubMedPubMedCentralCrossRef Ranadheera C, Valcourt EJ, Warner BM, Poliquin G, Rosenke K, Frost K, Tierney K, Saturday G, Miao J, Westover JB, et al. Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Sci Rep. 2020;10:12378.PubMedPubMedCentralCrossRef
51.
go back to reference Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avsic-Zupanc T, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3:556–62.PubMedPubMedCentralCrossRef Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avsic-Zupanc T, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3:556–62.PubMedPubMedCentralCrossRef
52.
go back to reference Kozak RA, Fraser RS, Biondi MJ, Majer A, Medina SJ, Griffin BD, Kobasa D, Stapleton PJ, Urfano C, Babuadze G, et al. Dual RNA-Seq characterization of host and pathogen gene expression in liver cells infected with Crimean-Congo Hemorrhagic Fever Virus. PLoS Negl Trop Dis. 2020;14:e0008105.PubMedPubMedCentralCrossRef Kozak RA, Fraser RS, Biondi MJ, Majer A, Medina SJ, Griffin BD, Kobasa D, Stapleton PJ, Urfano C, Babuadze G, et al. Dual RNA-Seq characterization of host and pathogen gene expression in liver cells infected with Crimean-Congo Hemorrhagic Fever Virus. PLoS Negl Trop Dis. 2020;14:e0008105.PubMedPubMedCentralCrossRef
53.
go back to reference Bente DA, Alimonti JB, Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84:11089–100.PubMedPubMedCentralCrossRef Bente DA, Alimonti JB, Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84:11089–100.PubMedPubMedCentralCrossRef
54.
go back to reference Koehler JW, Delp KL, Hall AT, Olschner SP, Kearney BJ, Garrison AR, Altamura LA, Rossi CA, Minogue TD. Sequence optimized real-time reverse transcription polymerase chain reaction assay for detection of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2018;98:211–5.PubMedCrossRef Koehler JW, Delp KL, Hall AT, Olschner SP, Kearney BJ, Garrison AR, Altamura LA, Rossi CA, Minogue TD. Sequence optimized real-time reverse transcription polymerase chain reaction assay for detection of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2018;98:211–5.PubMedCrossRef
55.
go back to reference Li H, Hai Y, Lim SY, Toledo N, Crecente-Campo J, Schalk D, Li L, Omange RW, Dacoba TG, Liu LR, et al. Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS ONE. 2018;13:e0202997.PubMedPubMedCentralCrossRef Li H, Hai Y, Lim SY, Toledo N, Crecente-Campo J, Schalk D, Li L, Omange RW, Dacoba TG, Liu LR, et al. Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS ONE. 2018;13:e0202997.PubMedPubMedCentralCrossRef
56.
go back to reference Suschak JJ, Golden JW, Fitzpatrick CJ, Shoemaker CJ, Badger CV, Schmaljohn CS, Garrison AR. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vac. 2021;6:31.CrossRef Suschak JJ, Golden JW, Fitzpatrick CJ, Shoemaker CJ, Badger CV, Schmaljohn CS, Garrison AR. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vac. 2021;6:31.CrossRef
57.
go back to reference Welch SR, Scholte FEM, Spengler JR, Ritter JM, Coleman-McCray JD, Harmon JR, Nichol ST, Zaki SR, Spiropoulou CF, Bergeron E. The Crimean-Congo hemorrhagic fever virus NSm protein is dispensable for growth in vitro and disease in Ifnar(-/-) mice. Microorganisms. 2020;8:775.PubMedPubMedCentralCrossRef Welch SR, Scholte FEM, Spengler JR, Ritter JM, Coleman-McCray JD, Harmon JR, Nichol ST, Zaki SR, Spiropoulou CF, Bergeron E. The Crimean-Congo hemorrhagic fever virus NSm protein is dispensable for growth in vitro and disease in Ifnar(-/-) mice. Microorganisms. 2020;8:775.PubMedPubMedCentralCrossRef
58.
go back to reference Welch SR, Ritter JM, McElroy AK, Harmon JR, Coleman-McCray JD, Scholte FEM, Kobinger GP, Bergeron E, Zaki SR, Nichol ST, et al. Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathog. 2019;15:e1008183.PubMedPubMedCentralCrossRef Welch SR, Ritter JM, McElroy AK, Harmon JR, Coleman-McCray JD, Scholte FEM, Kobinger GP, Bergeron E, Zaki SR, Nichol ST, et al. Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathog. 2019;15:e1008183.PubMedPubMedCentralCrossRef
59.
go back to reference Spengler JR, Patel JR, Chakrabarti AK, Zivcec M, Garcia-Sastre A, Spiropoulou CF, Bergeron E. RIG-I mediates an antiviral response to Crimean-Congo hemorrhagic fever virus. J Virol. 2015;89:10219–29.PubMedPubMedCentralCrossRef Spengler JR, Patel JR, Chakrabarti AK, Zivcec M, Garcia-Sastre A, Spiropoulou CF, Bergeron E. RIG-I mediates an antiviral response to Crimean-Congo hemorrhagic fever virus. J Virol. 2015;89:10219–29.PubMedPubMedCentralCrossRef
60.
go back to reference Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–63.PubMed Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–63.PubMed
61.
go back to reference Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73:251–9.PubMedPubMedCentralCrossRef Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73:251–9.PubMedPubMedCentralCrossRef
62.
go back to reference Pickering BS, Smith G, Pinette MM, Embury-Hyatt C, Moffat E, Marszal P, Lewis CE. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2021;27:104–12.PubMedPubMedCentralCrossRef Pickering BS, Smith G, Pinette MM, Embury-Hyatt C, Moffat E, Marszal P, Lewis CE. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2021;27:104–12.PubMedPubMedCentralCrossRef
63.
go back to reference Li H, Nykoluk M, Li L, Liu LR, Omange RW, Soule G, Schroeder LT, Toledo N, Kashem MA, Correia-Pinto JF, et al. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE. 2017;12:e0186079.PubMedPubMedCentralCrossRef Li H, Nykoluk M, Li L, Liu LR, Omange RW, Soule G, Schroeder LT, Toledo N, Kashem MA, Correia-Pinto JF, et al. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE. 2017;12:e0186079.PubMedPubMedCentralCrossRef
64.
go back to reference Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, et al. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest. 2020;130:6429–42.PubMedPubMedCentralCrossRef Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, et al. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest. 2020;130:6429–42.PubMedPubMedCentralCrossRef
65.
go back to reference Scholte FEM, Zivcec M, Dzimianski JV, Deaton MK, Spengler JR, Welch SR, Nichol ST, Pegan SD, Spiropoulou CF, Bergeron E. Crimean-Congo hemorrhagic fever virus suppresses innate immune responses via a ubiquitin and ISG15 specific protease. Cell Rep. 2017;20:2396–407.PubMedPubMedCentralCrossRef Scholte FEM, Zivcec M, Dzimianski JV, Deaton MK, Spengler JR, Welch SR, Nichol ST, Pegan SD, Spiropoulou CF, Bergeron E. Crimean-Congo hemorrhagic fever virus suppresses innate immune responses via a ubiquitin and ISG15 specific protease. Cell Rep. 2017;20:2396–407.PubMedPubMedCentralCrossRef
66.
go back to reference Paragas J, Whitehouse CA, Endy TP, Bray M. A simple assay for determining antiviral activity against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2004;62:21–5.PubMedCrossRef Paragas J, Whitehouse CA, Endy TP, Bray M. A simple assay for determining antiviral activity against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2004;62:21–5.PubMedCrossRef
67.
go back to reference Bergeron E, Zivcec M, Chakrabarti AK, Nichol ST, Albarino CG, Spiropoulou CF. Recovery of recombinant crimean Congo Hemorrhagic fever virus reveals a function for non-structural glycoproteins cleavage by furin. PLoS Pathog. 2015;11:e1004879.PubMedPubMedCentralCrossRef Bergeron E, Zivcec M, Chakrabarti AK, Nichol ST, Albarino CG, Spiropoulou CF. Recovery of recombinant crimean Congo Hemorrhagic fever virus reveals a function for non-structural glycoproteins cleavage by furin. PLoS Pathog. 2015;11:e1004879.PubMedPubMedCentralCrossRef
68.
go back to reference Karlberg H, Tan YJ, Mirazimi A. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem. 2011;286:3227–34.PubMedCrossRef Karlberg H, Tan YJ, Mirazimi A. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem. 2011;286:3227–34.PubMedCrossRef
70.
73.
go back to reference Wu XW, Wang RF, Yuan M, Xu W, Yang XW. Dulbecco’s modified eagle’s medium and minimum essential medium–which one is more preferred for establishment of Caco-2 cell monolayer model used in evaluation of drug absorption? Pharmazie. 2013;68:805–10.PubMed Wu XW, Wang RF, Yuan M, Xu W, Yang XW. Dulbecco’s modified eagle’s medium and minimum essential medium–which one is more preferred for establishment of Caco-2 cell monolayer model used in evaluation of drug absorption? Pharmazie. 2013;68:805–10.PubMed
75.
go back to reference Leibovitz A, McCombs WM, 3rd, Johnston D, McCoy CE, Stinson JC: New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst 1973, 51:691–697. Leibovitz A, McCombs WM, 3rd, Johnston D, McCoy CE, Stinson JC: New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst 1973, 51:691–697.
76.
go back to reference Ammerman NC, Beier-Sexton M, Azad AF: Growth and maintenance of Vero cell lines. Curr Protoc Microbiol 2008, Appendix 4:Appendix 4E. Ammerman NC, Beier-Sexton M, Azad AF: Growth and maintenance of Vero cell lines. Curr Protoc Microbiol 2008, Appendix 4:Appendix 4E.
77.
go back to reference Nahapetian AT, Thomas JN, Thilly WG. Optimization of environment for high density Vero cell culture: effect of dissolved oxygen and nutrient supply on cell growth and changes in metabolites. J Cell Sci. 1986;81:65–103.PubMedCrossRef Nahapetian AT, Thomas JN, Thilly WG. Optimization of environment for high density Vero cell culture: effect of dissolved oxygen and nutrient supply on cell growth and changes in metabolites. J Cell Sci. 1986;81:65–103.PubMedCrossRef
79.
go back to reference Andersson I, Karlberg H, Mousavi-Jazi M, Martinez-Sobrido L, Weber F, Mirazimi A. Crimean-Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol. 2008;80:1397–404.PubMedCrossRef Andersson I, Karlberg H, Mousavi-Jazi M, Martinez-Sobrido L, Weber F, Mirazimi A. Crimean-Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol. 2008;80:1397–404.PubMedCrossRef
80.
go back to reference Zivcec M, Safronetz D, Scott D, Robertson S, Ebihara H, Feldmann H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon alpha/beta receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J Infect Dis. 2013;207:1909–21.PubMedPubMedCentralCrossRef Zivcec M, Safronetz D, Scott D, Robertson S, Ebihara H, Feldmann H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon alpha/beta receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J Infect Dis. 2013;207:1909–21.PubMedPubMedCentralCrossRef
81.
go back to reference Lindquist ME, Zeng X, Altamura LA, Daye SP, Delp KL, Blancett C, Coffin KM, Koehler JW, Coyne S, Shoemaker CJ, et al. Exploring Crimean-Congo Hemorrhagic fever virus-induced hepatic injury using antibody-mediated Type I interferon blockade in mice. J Virol 2018, 92. Lindquist ME, Zeng X, Altamura LA, Daye SP, Delp KL, Blancett C, Coffin KM, Koehler JW, Coyne S, Shoemaker CJ, et al. Exploring Crimean-Congo Hemorrhagic fever virus-induced hepatic injury using antibody-mediated Type I interferon blockade in mice. J Virol 2018, 92.
82.
go back to reference Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin. 2023;38:34–46.PubMedCrossRef Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin. 2023;38:34–46.PubMedCrossRef
83.
84.
85.
go back to reference Li N, Rao G, Li Z, Yin J, Chong T, Tian K, Fu Y, Cao S. Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus. Virol Sin. 2022;37:127–37.PubMedPubMedCentralCrossRef Li N, Rao G, Li Z, Yin J, Chong T, Tian K, Fu Y, Cao S. Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus. Virol Sin. 2022;37:127–37.PubMedPubMedCentralCrossRef
86.
go back to reference Duh D, Nichol ST, Khristova ML, Saksida A, Hafner-Bratkovic I, Petrovec M, Dedushaj I, Ahmeti S, Avsic-Zupanc T. The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol J. 2008;5:7.PubMedPubMedCentralCrossRef Duh D, Nichol ST, Khristova ML, Saksida A, Hafner-Bratkovic I, Petrovec M, Dedushaj I, Ahmeti S, Avsic-Zupanc T. The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol J. 2008;5:7.PubMedPubMedCentralCrossRef
Metadata
Title
Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods
Authors
Hongzhao Li
Greg Smith
Melissa Goolia
Peter Marszal
Bradley S. Pickering
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02089-w

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.