Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Review

Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update

Authors: Yicheng Yang, Zhiyao Wei, Changming Xiong, Haiyan Qian

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Myocardial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reportedly related to disease severity and mortality, attracting attention to exploring relevant pathogenic mechanisms. Limited by insufficient evidence, myocardial injury caused by direct viral invasion of cardiomyocytes (CMs) is not fully understood. Based on recent studies, endosomal dependence can compensate for S protein priming to mediate SARS-CoV-2 infection of CMs, damage the contractile function of CMs, trigger electrical dysfunction, and tip the balance of the renin–angiotensin–aldosterone system to exert a myocardial injury effect. In this review, we shed light on the direct injury caused by SARS-CoV-2 to provide a comprehensive understanding of the cardiac manifestations of coronavirus disease 2019 (COVID-19).
Literature
1.
go back to reference Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10: e17.CrossRef Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10: e17.CrossRef
2.
go back to reference Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ Res. 2022;209: 112816.CrossRef Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ Res. 2022;209: 112816.CrossRef
3.
go back to reference Psotka M, Abraham W, Fiuzat M, Filippatos G, Lindenfeld J, Ahmad T, Bhatt A, Carson P, Cleland J, Felker G, et al. Conduct of clinical trials in the era of COVID-19: JACC scientific expert panel. J Am Coll Cardiol. 2020;76:2368–78.CrossRef Psotka M, Abraham W, Fiuzat M, Filippatos G, Lindenfeld J, Ahmad T, Bhatt A, Carson P, Cleland J, Felker G, et al. Conduct of clinical trials in the era of COVID-19: JACC scientific expert panel. J Am Coll Cardiol. 2020;76:2368–78.CrossRef
4.
go back to reference Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157–72.CrossRef Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157–72.CrossRef
5.
go back to reference Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.CrossRef Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.CrossRef
6.
go back to reference Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020;367:1260–3.CrossRef Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020;367:1260–3.CrossRef
7.
go back to reference Metzler B, Lechner I, Reindl M, Reinstadler SJ. Cardiac injury after COVID-19: primary cardiac and primary non-cardiac etiology makes a difference. Int J Cardiol. 2022;350:17–8.CrossRef Metzler B, Lechner I, Reindl M, Reinstadler SJ. Cardiac injury after COVID-19: primary cardiac and primary non-cardiac etiology makes a difference. Int J Cardiol. 2022;350:17–8.CrossRef
8.
go back to reference Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, et al. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res. 2021;128:1214–36.CrossRef Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, et al. COVID-19 and cardiovascular disease: from bench to bedside. Circ Res. 2021;128:1214–36.CrossRef
9.
go back to reference Helms J, Combes A, Aissaoui N. Cardiac injury in COVID-19. Intensive Care Med. 2022;48:111–3.CrossRef Helms J, Combes A, Aissaoui N. Cardiac injury in COVID-19. Intensive Care Med. 2022;48:111–3.CrossRef
10.
go back to reference Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa F, Adler Y, De Ferrari G. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart (British Cardiac Society). 2020;106:1127–31. Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa F, Adler Y, De Ferrari G. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart (British Cardiac Society). 2020;106:1127–31.
11.
go back to reference Wei Z, Geng Y, Huang J, Qian H. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020;22:1994–2006.CrossRef Wei Z, Geng Y, Huang J, Qian H. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020;22:1994–2006.CrossRef
12.
go back to reference Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P, Hamm C, Westenfeld R, Schultheiss M, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7:2440–7.CrossRef Escher F, Pietsch H, Aleshcheva G, Bock T, Baumeier C, Elsaesser A, Wenzel P, Hamm C, Westenfeld R, Schultheiss M, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7:2440–7.CrossRef
14.
go back to reference Bojkova D, Wagner J, Shumliakivska M, Aslan G, Saleem U, Hansen A, Luxán G, Günther S, Pham M, Krishnan J, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116:2207–15.CrossRef Bojkova D, Wagner J, Shumliakivska M, Aslan G, Saleem U, Hansen A, Luxán G, Günther S, Pham M, Krishnan J, et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc Res. 2020;116:2207–15.CrossRef
16.
go back to reference Bulfamante G, Perrucci G, Falleni M, Sommariva E, Tosi D, Martinelli C, Songia P, Poggio P, Carugo S, Pompilio G. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines. 2020;8:626.CrossRef Bulfamante G, Perrucci G, Falleni M, Sommariva E, Tosi D, Martinelli C, Songia P, Poggio P, Carugo S, Pompilio G. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines. 2020;8:626.CrossRef
17.
go back to reference Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5:1281–5.CrossRef Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5:1281–5.CrossRef
18.
go back to reference Marchiano S, Hsiang T, Khanna A, Higashi T, Whitmore L, Bargehr J, Davaapil H, Chang J, Smith E, Ong L, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021;16:478–92.CrossRef Marchiano S, Hsiang T, Khanna A, Higashi T, Whitmore L, Bargehr J, Davaapil H, Chang J, Smith E, Ong L, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021;16:478–92.CrossRef
19.
go back to reference Liu H, Gai S, Wang X, Zeng J, Sun C, Zhao Y, Zheng Z. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res. 2020;116:1733–41.CrossRef Liu H, Gai S, Wang X, Zeng J, Sun C, Zhao Y, Zheng Z. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res. 2020;116:1733–41.CrossRef
20.
go back to reference Tucker N, Chaffin M, Bedi K, Papangeli I, Akkad A, Arduini A, Hayat S, Eraslan G, Muus C, Bhattacharyya R, et al. ACE2Myocyte-specific upregulation of in cardiovascular disease: implications for SARS-CoV-2-mediated myocarditis. Circulation. 2020;142:708–10.CrossRef Tucker N, Chaffin M, Bedi K, Papangeli I, Akkad A, Arduini A, Hayat S, Eraslan G, Muus C, Bhattacharyya R, et al. ACE2Myocyte-specific upregulation of in cardiovascular disease: implications for SARS-CoV-2-mediated myocarditis. Circulation. 2020;142:708–10.CrossRef
21.
go back to reference Sakamoto A, Kawakami R, Kawai K, Gianatti A, Pellegrini D, Kutys R, Guo L, Mori M, Cornelissen A, Sato Y, et al. ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) expression and localization of SARS-CoV-2 infection in the human heart. Arterioscler Thromb Vasc Biol. 2021;41:542–4.PubMed Sakamoto A, Kawakami R, Kawai K, Gianatti A, Pellegrini D, Kutys R, Guo L, Mori M, Cornelissen A, Sato Y, et al. ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) expression and localization of SARS-CoV-2 infection in the human heart. Arterioscler Thromb Vasc Biol. 2021;41:542–4.PubMed
22.
go back to reference Nicin L, Abplanalp W, Mellentin H, Kattih B, Tombor L, John D, Schmitto J, Heineke J, Emrich F, Arsalan M, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41:1804–6.CrossRef Nicin L, Abplanalp W, Mellentin H, Kattih B, Tombor L, John D, Schmitto J, Heineke J, Emrich F, Arsalan M, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41:1804–6.CrossRef
23.
go back to reference Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J. 2020;17:117.CrossRef Yang Y, Xiao Z, Ye K, He X, Sun B, Qin Z, Yu J, Yao J, Wu Q, Bao Z, Zhao W. SARS-CoV-2: characteristics and current advances in research. Virol J. 2020;17:117.CrossRef
24.
go back to reference Meng B, Abdullahi A, Ferreira I, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–14.CrossRef Meng B, Abdullahi A, Ferreira I, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–14.CrossRef
25.
go back to reference Kwon Y, Nukala S, Srivastava S, Miyamoto H, Ismail N, Jousma J, Rehman J, Ong S, Lee W, Ong S. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:514.CrossRef Kwon Y, Nukala S, Srivastava S, Miyamoto H, Ismail N, Jousma J, Rehman J, Ong S, Lee W, Ong S. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020;11:514.CrossRef
26.
go back to reference Gauchotte G, Venard V, Segondy M, Cadoz C, Esposito-Fava A, Barraud D, Louis G. SARS-Cov-2 fulminant myocarditis: an autopsy and histopathological case study. Int J Legal Med. 2021;135:577–81.CrossRef Gauchotte G, Venard V, Segondy M, Cadoz C, Esposito-Fava A, Barraud D, Louis G. SARS-Cov-2 fulminant myocarditis: an autopsy and histopathological case study. Int J Legal Med. 2021;135:577–81.CrossRef
27.
go back to reference Dolhnikoff M, Ferreira Ferranti J, de Almeida MR, Duarte-Neto A, Soares Gomes-Gouvêa M, Viu Degaspare N, Figueiredo Delgado A, Montanari Fiorita C, Nunes Leal G, Rodrigues R, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4:790–4.CrossRef Dolhnikoff M, Ferreira Ferranti J, de Almeida MR, Duarte-Neto A, Soares Gomes-Gouvêa M, Viu Degaspare N, Figueiredo Delgado A, Montanari Fiorita C, Nunes Leal G, Rodrigues R, et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health. 2020;4:790–4.CrossRef
28.
go back to reference Albert C, Carmona-Rubio A, Weiss A, Procop G, Starling R, Rodriguez E. The enemy within: sudden-onset reversible cardiogenic shock with biopsy-proven cardiac myocyte infection by severe acute respiratory syndrome coronavirus 2. Circulation. 2020;142:1865–70.CrossRef Albert C, Carmona-Rubio A, Weiss A, Procop G, Starling R, Rodriguez E. The enemy within: sudden-onset reversible cardiogenic shock with biopsy-proven cardiac myocyte infection by severe acute respiratory syndrome coronavirus 2. Circulation. 2020;142:1865–70.CrossRef
29.
go back to reference Pérez-Bermejo J, Kang S, Rockwood S, Simoneau C, Joy D, Ramadoss G, Silva A, Flanigan W, Li H, Nakamura K, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv: The Preprint Server for Biology. 2020. https://doi.org/10.1101/2020.08.25.265561.CrossRef Pérez-Bermejo J, Kang S, Rockwood S, Simoneau C, Joy D, Ramadoss G, Silva A, Flanigan W, Li H, Nakamura K, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv: The Preprint Server for Biology. 2020. https://​doi.​org/​10.​1101/​2020.​08.​25.​265561.CrossRef
30.
go back to reference Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, et al. Functional effects of cardiomyocyte injury in COVID-19. J Virol. 2022;96: e0106321.CrossRef Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, et al. Functional effects of cardiomyocyte injury in COVID-19. J Virol. 2022;96: e0106321.CrossRef
31.
go back to reference Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117:2705–29.CrossRef Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117:2705–29.CrossRef
32.
go back to reference Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, Sepe P, Resasco T, Camporotondo R, Bruno R, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911–5.CrossRef Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, Sepe P, Resasco T, Camporotondo R, Bruno R, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020;22:911–5.CrossRef
33.
go back to reference Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science (New York, NY). 2020;369:1249–55.CrossRef Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science (New York, NY). 2020;369:1249–55.CrossRef
35.
go back to reference Alqahtani MS, Abbas M, Alsabaani A, Alqarni A, Almohiy HM, Alsawqaee E, Alshahrani R, Alshahrani S. The potential impact of COVID-19 virus on the heart and the circulatory system. Infect Drug Resist. 2022;15:1175–89.CrossRef Alqahtani MS, Abbas M, Alsabaani A, Alqarni A, Almohiy HM, Alsawqaee E, Alshahrani R, Alshahrani S. The potential impact of COVID-19 virus on the heart and the circulatory system. Infect Drug Resist. 2022;15:1175–89.CrossRef
36.
go back to reference Li Y, Renner D, Comar C, Whelan J, Reyes H, Cardenas-Diaz F, Truitt R, Tan L, Dong B, Alysandratos K, et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv: The Preprint Server for Biology. 2020. https://doi.org/10.1101/2020.09.24.312553.CrossRef Li Y, Renner D, Comar C, Whelan J, Reyes H, Cardenas-Diaz F, Truitt R, Tan L, Dong B, Alysandratos K, et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial derived cells and cardiomyocytes. bioRxiv: The Preprint Server for Biology. 2020. https://​doi.​org/​10.​1101/​2020.​09.​24.​312553.CrossRef
38.
go back to reference Lai M, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100.CrossRef Lai M, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1–100.CrossRef
39.
go back to reference Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. Mas receptor mediates cardioprotection of angiotensin-(1–7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J Cell Mol Med. 2016;20:48–57.CrossRef Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, Zou Y. Mas receptor mediates cardioprotection of angiotensin-(1–7) against Angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J Cell Mol Med. 2016;20:48–57.CrossRef
40.
go back to reference Huang C, Kuo W, Yeh Y, Ho T, Lin J, Lin D, Chu C, Tsai F, Tsai C, Huang C. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014;21:1262–74.CrossRef Huang C, Kuo W, Yeh Y, Ho T, Lin J, Lin D, Chu C, Tsai F, Tsai C, Huang C. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014;21:1262–74.CrossRef
41.
go back to reference Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.CrossRef Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. Int J Cardiol. 2011;146:364–70.CrossRef
42.
go back to reference Martins Lima A, Xavier C, Ferreira A, Raizada M, Wallukat G, Velloso E, dos Santos R, Fontes M. Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol. 2013;305:H1057-1067.CrossRef Martins Lima A, Xavier C, Ferreira A, Raizada M, Wallukat G, Velloso E, dos Santos R, Fontes M. Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol. 2013;305:H1057-1067.CrossRef
43.
go back to reference Dias-Peixoto M, Santos R, Gomes E, Alves M, Almeida P, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S. Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension (Dallas, Tex: 1979). 2008;52:542–8.CrossRef Dias-Peixoto M, Santos R, Gomes E, Alves M, Almeida P, Greco L, Rosa M, Fauler B, Bader M, Alenina N, Guatimosim S. Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension (Dallas, Tex: 1979). 2008;52:542–8.CrossRef
Metadata
Title
Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update
Authors
Yicheng Yang
Zhiyao Wei
Changming Xiong
Haiyan Qian
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01833-y

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue