Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Research

Detection of recombinant breakpoint in the genome of human enterovirus E11 strain associated with a fatal nosocomial outbreak

Authors: Martina Rueca, Simone Lanini, Emanuela Giombini, Francesco Messina, Concetta Castilletti, Giuseppe Ippolito, Maria Rosaria Capobianchi, Maria Beatrice Valli

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

The aim of this study was to characterize the genome of a recombinant Enterovirus associated with severe and fatal nosocomial infection; it was typed as Echovirus 11 (E-11) according to the VP1 gene. Enterovirus infection is generally asymptomatic and self-limited, but occasionally it may progress to a more severe clinical manifestation, as in the case described here. Recombination plays a crucial role in the evolution of Enteroviruses (EVs) and has been recognized as the main driving force behind the emergence of epidemic strains associated with severe infection. Therefore, it is of utmost importance to monitor the circulation of recombinant strains for surveillance purposes.

Methods

Enterovirus-RNA was detected in the serum and liver biopsy of patients involved in the nosocomial cluster by commercial One-Step qRT-PCR method and the Enterovirus strains were isolated in vitro. The EVs typing was determined by analyzing the partial-length of the 5′UTR and VP1 sequences with the web-based open-access Enterovirus Genotyping Tool Version 0.1. The amplicons targeting 5′UTR, VP1 and overlapping fragments of the entire genome were sequenced with the Sanger method. Phylogenetic analysis was performed comparing the VP1 and the full-genome sequences of our strains against an appropriate reference set of Enterovirus prototypes of the Picornaviridae genera and species retrieved from the Enterovirus Genotyping Tool. Recombination analysis was performed using RDP4 software.

Results

The Neighbor-Joining tree of the VP1 gene revealed that the 4 patients were infected with an identical molecular variant of Echovirus 11 (E-11). While the phylogenetic and the RDP4 analysis of the full-genome sequences provided evidence that it was a chimeric strain between an E-11 and a Coxsackievirus B (CV-B).

Conclusions

The chimeric structure of the E-11 genome might have contributed to the severe infection and epidemic feature of the strain, but further biological characterizations are needed. The evidence reported in this study, highlights the limit of typing techniques based on the VP1 gene, as they fail to identify the emergence of recombinant strains with potentially more pathogenic or epidemic properties, thus providing only partial information on the epidemiology and pathogenesis of Enteroviruses.
Appendix
Available only for authorised users
Literature
3.
go back to reference Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Invest. 2004;113(12):1743–53.CrossRef Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Invest. 2004;113(12):1743–53.CrossRef
4.
go back to reference Merkle I, van Ooij MJM, van Kuppeveld FJM, Glaudemans DHRF, Galama JMD, Henke A, et al. Biological significance of a human enterovirus B-specific RNA element in the 3′ nontranslated region. J Virol. 2002;76(19):9900–9.CrossRef Merkle I, van Ooij MJM, van Kuppeveld FJM, Glaudemans DHRF, Galama JMD, Henke A, et al. Biological significance of a human enterovirus B-specific RNA element in the 3′ nontranslated region. J Virol. 2002;76(19):9900–9.CrossRef
5.
go back to reference Harvala H, Simmonds P. Human parechoviruses: biology, epidemiology and clinical significance. J Clin Virol. 2009;45(1):1–9.CrossRef Harvala H, Simmonds P. Human parechoviruses: biology, epidemiology and clinical significance. J Clin Virol. 2009;45(1):1–9.CrossRef
6.
go back to reference Kuryk L, Wieczorek M, Diedrich S, Böttcher S, Witek A, Litwińska B. Genetic analysis of poliovirus strains isolated from sewage in Poland. J Med Virol. 2014;86(7):1243–8.CrossRef Kuryk L, Wieczorek M, Diedrich S, Böttcher S, Witek A, Litwińska B. Genetic analysis of poliovirus strains isolated from sewage in Poland. J Med Virol. 2014;86(7):1243–8.CrossRef
7.
go back to reference Wieczorek M, Ciąćka A, Witek A, Kuryk L, Żuk-Wasek A. Environmental surveillance of non-polio enteroviruses in Poland, 2011. Food Environ Virol. 2015;7:224–31.CrossRef Wieczorek M, Ciąćka A, Witek A, Kuryk L, Żuk-Wasek A. Environmental surveillance of non-polio enteroviruses in Poland, 2011. Food Environ Virol. 2015;7:224–31.CrossRef
8.
go back to reference McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Kroes ACM, et al. Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol. 2010;84(18):9292–300.CrossRef McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Kroes ACM, et al. Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol. 2010;84(18):9292–300.CrossRef
9.
go back to reference Materials A, Rna V, Easymag N, Iii S, Platinum I, Pcr S, et al. Multirecombinant enterovirus A71 subgenogroup C1 isolates associated with neurologic disease. France. 2017;2016–2017:2016–7. Materials A, Rna V, Easymag N, Iii S, Platinum I, Pcr S, et al. Multirecombinant enterovirus A71 subgenogroup C1 isolates associated with neurologic disease. France. 2017;2016–2017:2016–7.
11.
go back to reference Kujawski SA, Midgley CM, Rha B, Lively JY, Nix WA, Curns AT, et al. Enterovirus D68–associated acute respiratory illness—new vaccine surveillance network, United States, July–October, 2017 and 2018. MMWR. 2019;68(12):277–80.PubMedPubMedCentral Kujawski SA, Midgley CM, Rha B, Lively JY, Nix WA, Curns AT, et al. Enterovirus D68–associated acute respiratory illness—new vaccine surveillance network, United States, July–October, 2017 and 2018. MMWR. 2019;68(12):277–80.PubMedPubMedCentral
15.
go back to reference Kroneman A, Vennema H, Deforche K, Avoort H, Peñaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011;51(2):121–5.CrossRef Kroneman A, Vennema H, Deforche K, Avoort H, Peñaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011;51(2):121–5.CrossRef
16.
go back to reference Nicholson F, Meetoo G, Aiyar S, Banatvala JE, Muir P. Detection of enterovirus RNA in clinical samples by nested polymerase chain reaction for rapid diagnosis of enterovirus infection. J Virol Methods. 1994;48:155–66.CrossRef Nicholson F, Meetoo G, Aiyar S, Banatvala JE, Muir P. Detection of enterovirus RNA in clinical samples by nested polymerase chain reaction for rapid diagnosis of enterovirus infection. J Virol Methods. 1994;48:155–66.CrossRef
17.
go back to reference Allan Nix W, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol. 2006;44(8):2698–704.CrossRef Allan Nix W, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol. 2006;44(8):2698–704.CrossRef
20.
go back to reference Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed
21.
go back to reference Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.CrossRef Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.CrossRef
22.
go back to reference Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1(1):1–5.CrossRef Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1(1):1–5.CrossRef
23.
go back to reference Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.CrossRef Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.CrossRef
24.
go back to reference The GENECONV, method: Padidam, M., Sawyer, S. & Fauquet, C. M. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.CrossRef The GENECONV, method: Padidam, M., Sawyer, S. & Fauquet, C. M. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.CrossRef
25.
go back to reference The CHIMAERA, method: Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci. 2001;98:13757–62.CrossRef The CHIMAERA, method: Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci. 2001;98:13757–62.CrossRef
26.
go back to reference Maynard Smith J. The MAXCHI method: analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9. Maynard Smith J. The MAXCHI method: analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.
27.
go back to reference Martin DP, Posada D, Crandall KA, Williamson C. The BOOTSCAN/RECSCAN method: a modified BOOTSCAN algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir. 2005;21(1):98–102.CrossRef Martin DP, Posada D, Crandall KA, Williamson C. The BOOTSCAN/RECSCAN method: a modified BOOTSCAN algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir. 2005;21(1):98–102.CrossRef
28.
go back to reference Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: A Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics. 2000;16(7):573–82.CrossRef Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: A Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics. 2000;16(7):573–82.CrossRef
29.
go back to reference Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007;176(2):1035–47.CrossRef Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007;176(2):1035–47.CrossRef
30.
go back to reference Lemey P, Lott M, Martin DP, Moulton V. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinform. 2009;10:1–18.CrossRef Lemey P, Lott M, Martin DP, Moulton V. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinform. 2009;10:1–18.CrossRef
31.
go back to reference Li J, Yan D, Chen L, Zhang Y, Song Y, Zhu S, et al. Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci Rep. 2019;9(1):10583.CrossRef Li J, Yan D, Chen L, Zhang Y, Song Y, Zhu S, et al. Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci Rep. 2019;9(1):10583.CrossRef
32.
go back to reference Oberste MS, Maher K, Kilpatrick DR, Flemister MR, Brown BA, Pallansh MA. Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol. 1999;37(5):1288–93.CrossRef Oberste MS, Maher K, Kilpatrick DR, Flemister MR, Brown BA, Pallansh MA. Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol. 1999;37(5):1288–93.CrossRef
34.
go back to reference Leitch ECM, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Kroes ACM, et al. Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol. 2010;84(18):9292–300.CrossRef Leitch ECM, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, Kroes ACM, et al. Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol. 2010;84(18):9292–300.CrossRef
35.
go back to reference Kyriakopoulou Z, Pliaka V. Recombination among human non-polio enteroviruses : implications for epidemiology and evolution. Virus Genes. 2015;50:177–88.CrossRef Kyriakopoulou Z, Pliaka V. Recombination among human non-polio enteroviruses : implications for epidemiology and evolution. Virus Genes. 2015;50:177–88.CrossRef
36.
go back to reference Muslin C, Kain AM, Bessaud M, Blondel B, Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019;11(9):1–30.CrossRef Muslin C, Kain AM, Bessaud M, Blondel B, Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019;11(9):1–30.CrossRef
37.
go back to reference Moline HL, Karachunski PI, Strain A, Griffith J, Kenyon C, Schleiss MR. Acute transverse myelitis caused by echovirus 11 in a pediatric patient: case report and review of the current literature. Child Neurol Open. 2018;5:1–4.CrossRef Moline HL, Karachunski PI, Strain A, Griffith J, Kenyon C, Schleiss MR. Acute transverse myelitis caused by echovirus 11 in a pediatric patient: case report and review of the current literature. Child Neurol Open. 2018;5:1–4.CrossRef
38.
go back to reference Chevaliez S, Szendröi A, Caro V, Balanant J, Guillot S, Berencsi G, Delpeyroux F. Molecular comparison of echovirus 11 strains circulating in Europe during an epidemic of multisystem hemorrhagic disease of infants indicates that evolution generally occurs by recombination. Virology. 2004;325(1):56–70.CrossRef Chevaliez S, Szendröi A, Caro V, Balanant J, Guillot S, Berencsi G, Delpeyroux F. Molecular comparison of echovirus 11 strains circulating in Europe during an epidemic of multisystem hemorrhagic disease of infants indicates that evolution generally occurs by recombination. Virology. 2004;325(1):56–70.CrossRef
39.
go back to reference Oberste MS, Nix WA, Kilpatrick DR, Flemister MR, Pallansh MA. Molecular epidemiology and type-specific detection of echovirus 11isolates from the Americas, Europe, Africa, Australia, southern Asia and the Middle East. Virus Res. 2003;2003(91):241–8.CrossRef Oberste MS, Nix WA, Kilpatrick DR, Flemister MR, Pallansh MA. Molecular epidemiology and type-specific detection of echovirus 11isolates from the Americas, Europe, Africa, Australia, southern Asia and the Middle East. Virus Res. 2003;2003(91):241–8.CrossRef
40.
go back to reference Halliday E, Winkelstein J, Webster ADB. Enteroviral infections in primary immunodeficiency (PID): a survey of morbidity and mortality. J Infect. 2003;48:1–8.CrossRef Halliday E, Winkelstein J, Webster ADB. Enteroviral infections in primary immunodeficiency (PID): a survey of morbidity and mortality. J Infect. 2003;48:1–8.CrossRef
41.
go back to reference Chu PY, Tyan YC, Chen YS, Chen HL, Lu PL, Chen YH, et al. Transmission and demographic dynamics of coxsackievirus B1. PLoS ONE. 2015;10(6):1–16. Chu PY, Tyan YC, Chen YS, Chen HL, Lu PL, Chen YH, et al. Transmission and demographic dynamics of coxsackievirus B1. PLoS ONE. 2015;10(6):1–16.
Metadata
Title
Detection of recombinant breakpoint in the genome of human enterovirus E11 strain associated with a fatal nosocomial outbreak
Authors
Martina Rueca
Simone Lanini
Emanuela Giombini
Francesco Messina
Concetta Castilletti
Giuseppe Ippolito
Maria Rosaria Capobianchi
Maria Beatrice Valli
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01821-2

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue