Skip to main content
Top
Published in: Virology Journal 1/2021

01-12-2021 | Yersinia | Research

Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids

Authors: Bret M. Boyd, Germain Chevignon, Vilas Patel, Kerry M. Oliver, Michael R. Strand

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE.

Methods

We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages.

Results

Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae.

Conclusions

APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae.
Appendix
Available only for authorised users
Literature
2.
go back to reference Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.PubMed Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.PubMed
3.
go back to reference Rohwer F, Barott K. Viral information. Biol Philos. 2013;28:283–97.PubMed Rohwer F, Barott K. Viral information. Biol Philos. 2013;28:283–97.PubMed
4.
go back to reference Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.PubMed Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.PubMed
5.
go back to reference Brussaard CP, Wilhelm SW, Thingstad F, Weinbauer MG, Bratbak G, Heldal M, Kimmance SA, Middelboe M, Nagasaki K, Paul JH, Schroeder DC, Suttle CA, Vaqué D, Wommack KE. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2008;2:575–8.PubMed Brussaard CP, Wilhelm SW, Thingstad F, Weinbauer MG, Bratbak G, Heldal M, Kimmance SA, Middelboe M, Nagasaki K, Paul JH, Schroeder DC, Suttle CA, Vaqué D, Wommack KE. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2008;2:575–8.PubMed
6.
go back to reference Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMedPubMedCentral Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMedPubMedCentral
7.
go back to reference Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, Adhya SL. Novel ‘Superspreader’ bacteriophages promote horizontal gene transfer by transformation. MBio. 2017;8:e02115-e2116.PubMedPubMedCentral Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, Adhya SL. Novel ‘Superspreader’ bacteriophages promote horizontal gene transfer by transformation. MBio. 2017;8:e02115-e2116.PubMedPubMedCentral
8.
go back to reference van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel FJM. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acrythosiphon pisum. Virology. 1999;262:104–13.PubMed van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel FJM. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acrythosiphon pisum. Virology. 1999;262:104–13.PubMed
9.
go back to reference Clark AJ, Pontes M, Jones T, Dale C. A possible heterodimeric prophage-like element in the genome of the insect endosymbiont Sodalis glossinidius. J Bacteriol. 2007;189:2949–51.PubMedPubMedCentral Clark AJ, Pontes M, Jones T, Dale C. A possible heterodimeric prophage-like element in the genome of the insect endosymbiont Sodalis glossinidius. J Bacteriol. 2007;189:2949–51.PubMedPubMedCentral
10.
go back to reference Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.PubMed Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.PubMed
11.
go back to reference Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol. 2009;75:5676–86.PubMedPubMedCentral Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol. 2009;75:5676–86.PubMedPubMedCentral
13.
go back to reference Pramono AK, Kuwahara H, Itoh T, Toyoda A, Yamada A, Hongoh Y. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of cellulolytic protest in the termite gut. Microbes Environ. 2017;32:112–7.PubMedPubMedCentral Pramono AK, Kuwahara H, Itoh T, Toyoda A, Yamada A, Hongoh Y. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of cellulolytic protest in the termite gut. Microbes Environ. 2017;32:112–7.PubMedPubMedCentral
14.
go back to reference Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. Finer-scale phylosymbiosis: insights from insect viromes. mSystems. 2018;3:e00131–18.PubMedPubMedCentral Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. Finer-scale phylosymbiosis: insights from insect viromes. mSystems. 2018;3:e00131–18.PubMedPubMedCentral
15.
go back to reference Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Interscience; 1965. Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Interscience; 1965.
16.
go back to reference Puchta O. Experimentelle untersuchungen uber die bedeutung der symbiose der kliderlaus Pediculus vestimenti Brum. Z Parasitenkd. 1955;17:1.PubMed Puchta O. Experimentelle untersuchungen uber die bedeutung der symbiose der kliderlaus Pediculus vestimenti Brum. Z Parasitenkd. 1955;17:1.PubMed
17.
go back to reference Douglas AE. Sulphate utilization in an aphid symbiosis. Insect Biochem. 1988;28:599–605. Douglas AE. Sulphate utilization in an aphid symbiosis. Insect Biochem. 1988;28:599–605.
18.
go back to reference Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003;100:1803–7.PubMedPubMedCentral Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003;100:1803–7.PubMedPubMedCentral
19.
go back to reference Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.PubMed Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.PubMed
20.
go back to reference Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781.PubMed Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781.PubMed
21.
go back to reference Oliver KM, Campos J, Moran NA, Hunter MS. Population dynamics of the defensive symbionts in aphids. Proc R Soc B. 2007;275:293–9.PubMedCentral Oliver KM, Campos J, Moran NA, Hunter MS. Population dynamics of the defensive symbionts in aphids. Proc R Soc B. 2007;275:293–9.PubMedCentral
22.
go back to reference Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science. 2008;322:702.PubMed Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science. 2008;322:702.PubMed
23.
go back to reference Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23:38–47. Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23:38–47.
24.
go back to reference Jaenike J. Population genetics of beneficial heritable symbionts. Trends Ecol Evol. 2012;27:226–32.PubMed Jaenike J. Population genetics of beneficial heritable symbionts. Trends Ecol Evol. 2012;27:226–32.PubMed
25.
go back to reference Bressan A. Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infect Genet Evol. 2014;22:81–90.PubMed Bressan A. Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infect Genet Evol. 2014;22:81–90.PubMed
26.
go back to reference Nikoh N, Hosokawa T, Moriyama M, Oshima K, Fukatsu T. Evolutionary origins of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.PubMedPubMedCentral Nikoh N, Hosokawa T, Moriyama M, Oshima K, Fukatsu T. Evolutionary origins of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.PubMedPubMedCentral
27.
go back to reference Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T. Symbiotic bacterium modifies aphid body color. Science. 2010;330:1102–4.PubMed Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T. Symbiotic bacterium modifies aphid body color. Science. 2010;330:1102–4.PubMed
28.
go back to reference Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 2013;23:1478–84.PubMed Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 2013;23:1478–84.PubMed
29.
go back to reference Heyworth ER, Ferrari J. Heat stress affects facultative symbiont-mediated protection from a parasitoid wasp. PLoS ONE. 2016;11:e0167180.PubMedPubMedCentral Heyworth ER, Ferrari J. Heat stress affects facultative symbiont-mediated protection from a parasitoid wasp. PLoS ONE. 2016;11:e0167180.PubMedPubMedCentral
30.
go back to reference Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol Evol. 2019;11:3510–22.PubMedPubMedCentral Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol Evol. 2019;11:3510–22.PubMedPubMedCentral
31.
go back to reference Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Rev Entomol. 2010;55:247–66. Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Rev Entomol. 2010;55:247–66.
32.
go back to reference Oliver KM, Martinez AJ. How resident microbes modulate ecologically-important traits of insects. Curr Opin Insect Sci. 2014;4:1–7.PubMed Oliver KM, Martinez AJ. How resident microbes modulate ecologically-important traits of insects. Curr Opin Insect Sci. 2014;4:1–7.PubMed
33.
go back to reference Douglas AE. Nutritional interaction in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.PubMed Douglas AE. Nutritional interaction in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.PubMed
34.
go back to reference Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am. 2012;95:711–8. Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am. 2012;95:711–8.
35.
go back to reference Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2004;124:1061–75. Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2004;124:1061–75.
36.
go back to reference Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: insects, bacteria, viruses and virulence genes. Proc Natl Acad Sci USA. 2005;102:16919–26.PubMedPubMedCentral Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: insects, bacteria, viruses and virulence genes. Proc Natl Acad Sci USA. 2005;102:16919–26.PubMedPubMedCentral
37.
go back to reference Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;186:516–25. Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;186:516–25.
38.
go back to reference Rollat-Farnier PA, Santos-Garcia D, Rao Q, Sagot MF, Silva FJ, Henri H, et al. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Genome Biol Evol. 2015;7:839–55.PubMedPubMedCentral Rollat-Farnier PA, Santos-Garcia D, Rao Q, Sagot MF, Silva FJ, Henri H, et al. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Genome Biol Evol. 2015;7:839–55.PubMedPubMedCentral
39.
go back to reference Zytynska SE, Weisser WW. The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol. 2015;411:13–26. Zytynska SE, Weisser WW. The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol. 2015;411:13–26.
40.
go back to reference Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc R Soc B. 2017;284:2017925. Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc R Soc B. 2017;284:2017925.
41.
go back to reference Oliver KM, Higashi CHV. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7.PubMed Oliver KM, Higashi CHV. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7.PubMed
42.
go back to reference Vorburger C, Sandrock C, Gouskov A, Castaneda LE, Ferrari J. Genotypic variation and the role of defensive endosymbionts in all-parthenogenetic host-parasitoid interaction. Evolution. 2009;63:1439–50.PubMed Vorburger C, Sandrock C, Gouskov A, Castaneda LE, Ferrari J. Genotypic variation and the role of defensive endosymbionts in all-parthenogenetic host-parasitoid interaction. Evolution. 2009;63:1439–50.PubMed
43.
go back to reference Schmid M, Sieger R, Zimmermann YS, Vorburger C. Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Funct Ecol. 2012;261:207–15. Schmid M, Sieger R, Zimmermann YS, Vorburger C. Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Funct Ecol. 2012;261:207–15.
44.
go back to reference Asplen MK, Bano N, Brady CM, Desneux N, Hopper KR, Malouines C, et al. Specialisation of bacterial endosymbionts that protect aphids from parasitoids. Ecol Entomol. 2014;39:736–9. Asplen MK, Bano N, Brady CM, Desneux N, Hopper KR, Malouines C, et al. Specialisation of bacterial endosymbionts that protect aphids from parasitoids. Ecol Entomol. 2014;39:736–9.
45.
go back to reference Martinez AJ, Kim KL, Harmon JP, Oliver KM. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE. 2016;11:e0154670.PubMedPubMedCentral Martinez AJ, Kim KL, Harmon JP, Oliver KM. Specificity of multi-modal aphid defenses against two rival parasitoids. PLoS ONE. 2016;11:e0154670.PubMedPubMedCentral
46.
go back to reference Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbiont not host genotype. Proc Natl Acad Sci USA. 2005;102:12795–800.PubMedPubMedCentral Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbiont not host genotype. Proc Natl Acad Sci USA. 2005;102:12795–800.PubMedPubMedCentral
47.
go back to reference Martinez AJ, Weldon SR, Oliver KM. Effects of parasitism on aphid nutritional and protective symbioses. Mol Ecol. 2014;23:1594–607.PubMed Martinez AJ, Weldon SR, Oliver KM. Effects of parasitism on aphid nutritional and protective symbioses. Mol Ecol. 2014;23:1594–607.PubMed
48.
go back to reference Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;23:1594–607. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;23:1594–607.
49.
go back to reference Cayetano L, Vorburger C. Symbiont-conferred protection against Hymenopteran parasitoids in aphids: how general is it? Ecol Entomol. 2015;40:85–93. Cayetano L, Vorburger C. Symbiont-conferred protection against Hymenopteran parasitoids in aphids: how general is it? Ecol Entomol. 2015;40:85–93.
50.
go back to reference Sandstrom JP, Russel JA, White JP, Moran NA. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001;101:217–28. Sandstrom JP, Russel JA, White JP, Moran NA. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001;101:217–28.
51.
go back to reference Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva F, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts the whitefly Bemesia tabaci. BMC Genom. 2015;16:226. Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva F, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts the whitefly Bemesia tabaci. BMC Genom. 2015;16:226.
52.
go back to reference Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol. 2017;87:464–77.PubMed Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol. 2017;87:464–77.PubMed
53.
go back to reference Dennis AB, Patel V, Oliver KM, Vorburger C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution. 2017;71:2599–617.PubMed Dennis AB, Patel V, Oliver KM, Vorburger C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution. 2017;71:2599–617.PubMed
54.
go back to reference Hopper KR, Kuhn KL, Lanier K, Rhoads JH, Oliver KM, White KM, et al. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis. Biol Cont. 2017;116:3–9. Hopper KR, Kuhn KL, Lanier K, Rhoads JH, Oliver KM, White KM, et al. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis. Biol Cont. 2017;116:3–9.
55.
go back to reference Degnan PH, Moran NA. Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol. 2008;74:67826791. Degnan PH, Moran NA. Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol. 2008;74:67826791.
56.
go back to reference Chevignon G, Boyd BM, Brandt JW, Oliver KM, Stand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10:786–802.PubMedPubMedCentral Chevignon G, Boyd BM, Brandt JW, Oliver KM, Stand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10:786–802.PubMedPubMedCentral
57.
go back to reference Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in symbiotic mutualism. Science. 2009;325:992–4.PubMedPubMedCentral Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in symbiotic mutualism. Science. 2009;325:992–4.PubMedPubMedCentral
58.
go back to reference Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc R Soc Lond B. 2013;1751:2012–103. Weldon SR, Strand MR, Oliver KM. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc R Soc Lond B. 2013;1751:2012–103.
59.
go back to reference Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of a protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA. 2009;106:9063–8.PubMedPubMedCentral Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of a protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA. 2009;106:9063–8.PubMedPubMedCentral
60.
go back to reference Brussow H, Canchaya C. Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMedPubMedCentral Brussow H, Canchaya C. Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMedPubMedCentral
61.
go back to reference Lynn-Bell NL, Strand MR, Oliver KM. Bacteriophage acquisition restores protective mutualism. Microbiology. 2019;165:985–9.PubMed Lynn-Bell NL, Strand MR, Oliver KM. Bacteriophage acquisition restores protective mutualism. Microbiology. 2019;165:985–9.PubMed
62.
go back to reference Degnan PH, Moran NA. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol. 2008;2008(17):916–29. Degnan PH, Moran NA. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol. 2008;2008(17):916–29.
63.
go back to reference Oliver KM, Campos J, Moran NA, Hunter MS. Population dynamics of defensive symbionts in aphids. Proc Roy Soc B. 2008;275:293–9. Oliver KM, Campos J, Moran NA, Hunter MS. Population dynamics of defensive symbionts in aphids. Proc Roy Soc B. 2008;275:293–9.
64.
go back to reference Gehrer L, Vorburger C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Letters. 2012;8:613–5. Gehrer L, Vorburger C. Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Letters. 2012;8:613–5.
65.
go back to reference Henry LM, Peddoud J, Simon JC, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;2317:1713–7. Henry LM, Peddoud J, Simon JC, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;2317:1713–7.
66.
go back to reference Li Q, Fan J, Sun J, Wang M-Q, Chen J. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J Agric Food Chem. 2018;66:13367–77.PubMed Li Q, Fan J, Sun J, Wang M-Q, Chen J. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J Agric Food Chem. 2018;66:13367–77.PubMed
67.
go back to reference Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marin A. The protector within: comparative genomics of APSE phage across aphids reveals rampant recombination and diverse toxin arsenals. Genome Biol Evol. 2020;12:878–89.PubMedPubMedCentral Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marin A. The protector within: comparative genomics of APSE phage across aphids reveals rampant recombination and diverse toxin arsenals. Genome Biol Evol. 2020;12:878–89.PubMedPubMedCentral
68.
go back to reference Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology. 2011;15:393–415. Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology. 2011;15:393–415.
69.
go back to reference Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology. 2016;496:255–76.PubMed Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology. 2016;496:255–76.PubMed
70.
go back to reference Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology. 2014;468–470:421–43.PubMed Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology. 2014;468–470:421–43.PubMed
71.
go back to reference Clark AJ, Inwood W, Cloutier T, Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol. 2001;311:657–79.PubMed Clark AJ, Inwood W, Cloutier T, Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol. 2001;311:657–79.PubMed
72.
go back to reference Hansen AK, Jeong G, Paine TD, Stouthamer R. Frequency of secondary symbiont infection in an invasive psyllid related to parasitism pressure on a geographic scale in California. Appl Environ Microbiol. 2007;73:7531–5.PubMedPubMedCentral Hansen AK, Jeong G, Paine TD, Stouthamer R. Frequency of secondary symbiont infection in an invasive psyllid related to parasitism pressure on a geographic scale in California. Appl Environ Microbiol. 2007;73:7531–5.PubMedPubMedCentral
73.
go back to reference Tay Taylor GP, Coghlin PC, Floate KD. Perlman SJ. The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitoids. J Invertebr Pathol. 2011;106:371–9. Tay Taylor GP, Coghlin PC, Floate KD. Perlman SJ. The host range of the male-killing symbiont Arsenophonus nasoniae in filth fly parasitoids. J Invertebr Pathol. 2011;106:371–9.
74.
go back to reference Wilkes TE, Darby AC, Choi JH, Colboume JK, Werren JH, Hurst GD. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol Biol. 2010;19(Suppl 1):59–73.PubMed Wilkes TE, Darby AC, Choi JH, Colboume JK, Werren JH, Hurst GD. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol Biol. 2010;19(Suppl 1):59–73.PubMed
75.
go back to reference Duron O. Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol Ecol. 2014;90:184–94.PubMed Duron O. Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol Ecol. 2014;90:184–94.PubMed
76.
go back to reference Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMedPubMedCentral Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMedPubMedCentral
77.
go back to reference Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;3812:1647–9. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;3812:1647–9.
78.
go back to reference Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016;14:110.PubMedPubMedCentral Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016;14:110.PubMedPubMedCentral
79.
go back to reference Langmead B, Slazberg SL. Fast gapped-read alignment with Bowtie. Nat Methods. 2013;2(9):357–9. Langmead B, Slazberg SL. Fast gapped-read alignment with Bowtie. Nat Methods. 2013;2(9):357–9.
80.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;1990(215):403–10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;1990(215):403–10.
81.
go back to reference Alikhan NF, Petty NK, Ben Zakour NL, Beastson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparison. BMC Genom. 2011;12:402. Alikhan NF, Petty NK, Ben Zakour NL, Beastson SA. BLAST ring image generator (BRIG): simple prokaryote genome comparison. BMC Genom. 2011;12:402.
82.
83.
go back to reference Marchler-Bauer A, Bryant SH. CD-search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–31. Marchler-Bauer A, Bryant SH. CD-search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–31.
84.
go back to reference Allen JM, Huan DI, Cronk QC, Johnson KP. aTRAM-automated target restricted assembly method: a fast method assembling loci across divergent taxa from next-generation sequencing data. BMC Bioniform. 2015;16:98. Allen JM, Huan DI, Cronk QC, Johnson KP. aTRAM-automated target restricted assembly method: a fast method assembling loci across divergent taxa from next-generation sequencing data. BMC Bioniform. 2015;16:98.
85.
go back to reference Allen JM, Boyd MB, Nguyen NP, Vachaspati P, Warnow T, Huang DI, et al. Phylogenomics from whole genome sequences using aTRAM. Syst Biol. 2017;66:786–98.PubMed Allen JM, Boyd MB, Nguyen NP, Vachaspati P, Warnow T, Huang DI, et al. Phylogenomics from whole genome sequences using aTRAM. Syst Biol. 2017;66:786–98.PubMed
86.
go back to reference Boyd BM, Allen JM, Nguyen NP, Vachaspati P, Quicksall ZS, Warnow T, et al. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol. 2017;34:1743–57.PubMedPubMedCentral Boyd BM, Allen JM, Nguyen NP, Vachaspati P, Quicksall ZS, Warnow T, et al. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol Biol Evol. 2017;34:1743–57.PubMedPubMedCentral
87.
go back to reference Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMedPubMedCentral Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMedPubMedCentral
88.
go back to reference Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartionFinder2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.PubMed Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartionFinder2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.PubMed
89.
go back to reference Bryant D, Moulton V. NeighborNet: an agglomerative algorithm for the construction of planar phylogenetic networks. Mol Biol Evol. 2004;21:255–65.PubMed Bryant D, Moulton V. NeighborNet: an agglomerative algorithm for the construction of planar phylogenetic networks. Mol Biol Evol. 2004;21:255–65.PubMed
90.
go back to reference Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.PubMed Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.PubMed
91.
go back to reference Casjens S. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol. 2008;159:340–8.PubMedPubMedCentral Casjens S. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol. 2008;159:340–8.PubMedPubMedCentral
92.
go back to reference Botstein D, Herskowitz I. Properties of hybrids between Salmonella phage P22 and coliphage lambda. Nature. 1974;251:584–9.PubMed Botstein D, Herskowitz I. Properties of hybrids between Salmonella phage P22 and coliphage lambda. Nature. 1974;251:584–9.PubMed
93.
go back to reference Boyd EF, Brussow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 2002;10:521–9.PubMed Boyd EF, Brussow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 2002;10:521–9.PubMed
94.
go back to reference Gamage SD, Strasser JE, Chalk CL, Weiss AA. Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect Immun. 2003;71:3107–3015.PubMedPubMedCentral Gamage SD, Strasser JE, Chalk CL, Weiss AA. Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect Immun. 2003;71:3107–3015.PubMedPubMedCentral
96.
go back to reference Botstein D. A theory of modular evolution for bacteriophage. Ann NY Acad Sci. 1980;354:484–90.PubMed Botstein D. A theory of modular evolution for bacteriophage. Ann NY Acad Sci. 1980;354:484–90.PubMed
97.
go back to reference Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA. 1999;96:2192–7.PubMedPubMedCentral Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA. 1999;96:2192–7.PubMedPubMedCentral
98.
go back to reference Juhala RJ, For ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lamboid bacteriophages. J Mol Biol. 2000;299:27–51.PubMed Juhala RJ, For ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lamboid bacteriophages. J Mol Biol. 2000;299:27–51.PubMed
99.
go back to reference Brussow H, Hendrix RW. Phage genomics: small is beautiful. Cell. 2002;108:13–6.PubMed Brussow H, Hendrix RW. Phage genomics: small is beautiful. Cell. 2002;108:13–6.PubMed
101.
go back to reference Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol. 2004;16:667–78. Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol. 2004;16:667–78.
102.
go back to reference Campbell A. Prophage insertion sites. Res Microbiol. 2003;154:277–82.PubMed Campbell A. Prophage insertion sites. Res Microbiol. 2003;154:277–82.PubMed
103.
go back to reference Byl CV, Kropinski AM. Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol. 2000;182:6472–81.PubMedCentral Byl CV, Kropinski AM. Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol. 2000;182:6472–81.PubMedCentral
104.
go back to reference Efrony R, Atad I, Rosenberg E. Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol. 2009;58:139–45.PubMed Efrony R, Atad I, Rosenberg E. Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol. 2009;58:139–45.PubMed
105.
go back to reference Summer EJ, Enderle CJ, Ahern SJ, Gill JJ, Torres CP, Appel DN, Black MC, Young R, Gonzalez CF. Genomic and biological analysis of pahge Xfas53 and releated prophages of Xylella fastidiosa. J Bacteriol. 2010;192:179–90.PubMed Summer EJ, Enderle CJ, Ahern SJ, Gill JJ, Torres CP, Appel DN, Black MC, Young R, Gonzalez CF. Genomic and biological analysis of pahge Xfas53 and releated prophages of Xylella fastidiosa. J Bacteriol. 2010;192:179–90.PubMed
106.
go back to reference Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol. 2004;186:1503–17.PubMedPubMedCentral Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol. 2004;186:1503–17.PubMedPubMedCentral
107.
go back to reference Summer EJ, Gonzalez CF, Bomer M, Carlile T, Embry A, Kucherka AM, Lee J, Mebane L, Morrison WC, Mark L, King MD, LiPuma JJ, Vidaver AK, Young R. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol. 2006;188:255–68.PubMedPubMedCentral Summer EJ, Gonzalez CF, Bomer M, Carlile T, Embry A, Kucherka AM, Lee J, Mebane L, Morrison WC, Mark L, King MD, LiPuma JJ, Vidaver AK, Young R. Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol. 2006;188:255–68.PubMedPubMedCentral
108.
go back to reference Zhu J, Rao X, Tan Y, Xiong K, Hu Z, Chen Z, et al. Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. Genomics. 2010;96:167–72.PubMed Zhu J, Rao X, Tan Y, Xiong K, Hu Z, Chen Z, et al. Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. Genomics. 2010;96:167–72.PubMed
109.
go back to reference Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, et al. Characterization and genomic analyses of two newly isolate Morganella phages defines distant members amongst Tevenvirina and Autographivirinae subfamilies. Sci Rep. 2017;7:46157.PubMedPubMedCentral Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, et al. Characterization and genomic analyses of two newly isolate Morganella phages defines distant members amongst Tevenvirina and Autographivirinae subfamilies. Sci Rep. 2017;7:46157.PubMedPubMedCentral
110.
go back to reference Morozova V, Kozlova Y, Shedko E, Babkin I, Kurishikov A, Bokovaya O, et al. Isolation and characterization of a group of new Proteus bacteriophages. Arch Virol. 2018;163:2189–97.PubMed Morozova V, Kozlova Y, Shedko E, Babkin I, Kurishikov A, Bokovaya O, et al. Isolation and characterization of a group of new Proteus bacteriophages. Arch Virol. 2018;163:2189–97.PubMed
111.
go back to reference Oliveira H, Pinto G, Hendrix H, Noben JP, Gawor J, Kropinski AM, et al. A lytic Providencia rettgeri virus of potential therapeutic values is a deep-branching member of the T5virus genus. Appl Environ Microbial. 2017;83:e01567-e1617. Oliveira H, Pinto G, Hendrix H, Noben JP, Gawor J, Kropinski AM, et al. A lytic Providencia rettgeri virus of potential therapeutic values is a deep-branching member of the T5virus genus. Appl Environ Microbial. 2017;83:e01567-e1617.
112.
go back to reference Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2018;3:vex011. Díaz-Muñoz SL. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 2018;3:vex011.
113.
go back to reference Kupczok A, Neve H, Huang KD, Hoeppner MP, Heller KJ, Franz CMAP, Dagan T. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol Biol Evol. 2018;35:1147–59.PubMedPubMedCentral Kupczok A, Neve H, Huang KD, Hoeppner MP, Heller KJ, Franz CMAP, Dagan T. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol Biol Evol. 2018;35:1147–59.PubMedPubMedCentral
Metadata
Title
Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids
Authors
Bret M. Boyd
Germain Chevignon
Vilas Patel
Kerry M. Oliver
Michael R. Strand
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Yersinia
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01685-y

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue