Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Hepatitis C | Research

A study based on four immunoassays: Hepatitis C virus antibody against different antigens may have unequal contributions to detection

Authors: Xinyi Jiang, Le Chang, Ying Yan, Huimin Ji, Huizhen Sun, Fei Guo, Lunan Wang

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

All commercial Hepatitis C virus antibody (anti-HCV) assays use a combination of recombinant antigens to detect antibody response. Antibody responses to individual antigenic regions (core, NS3/4 and NS5) used in assays have not been investigated.

Methods

In this study, we quantified HCV viral load, tested anti-HCV with four commercial assays (Ortho-ELISA, Murex-ELISA, Architect-CMIA and Elecsys-ECLIA) in 682 plasma specimens. In antigenic region ELISA platform, microwells were coated with three antigens: core (c22-3), NS3/4 (c200) and NS5 individually. The signal-to-cutoff (S/Co) values of different assays, and antibody responses to individual antigens were compared. The specimens were divided into HCV RNA positive group, anti-HCV consistent group, and anti-HCV discrepant group.

Results

Anti-core and anti-NS3/4 were simultaneously detected in 99.2% of HCV RNA positive specimens and showed great consistency with total anti-HCV signals. Responses to the core region were more robust than those to the NS3/4 region in anti-HCV consistent group (p < 0.001). Anti-NS5 only occurred in companying with responses to the core and NS3/4 antigens, and failed to affect the final anti-HCV positive signals. In anti-HCV discrepant group, 39.0% of positive signals could not be traced back to any single antigenic region.

Conclusion

Antibody responses to the core and NS3/4 antigens were stronger, whereas responses to the NS5 antigen were the weakest, indicating that individual antigenic regions played different roles in total anti-HCV signals. This study provides an impetus for optimizing commercial anti-HCV assays.
Appendix
Available only for authorised users
Literature
3.
go back to reference Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.CrossRef Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.CrossRef
5.
go back to reference Li M, Zhuang H, Wei L. How would China achieve WHO’s target of eliminating HCV by 2030? Expert Rev Anti Infect Ther. 2019;17:763–73.CrossRef Li M, Zhuang H, Wei L. How would China achieve WHO’s target of eliminating HCV by 2030? Expert Rev Anti Infect Ther. 2019;17:763–73.CrossRef
6.
go back to reference Gretch DR, dela Rosa C, Carithers RL Jr, Willson RA, Williams B, Corey L. Assessment of hepatitis C viremia using molecular amplification technologies: correlations and clinical implications. Ann Intern Med. 1995;123:321–9.CrossRef Gretch DR, dela Rosa C, Carithers RL Jr, Willson RA, Williams B, Corey L. Assessment of hepatitis C viremia using molecular amplification technologies: correlations and clinical implications. Ann Intern Med. 1995;123:321–9.CrossRef
7.
go back to reference Richter SS. Laboratory assays for diagnosis and management of hepatitis C virus infection. J Clin Microbiol. 2002;40:4407–12.CrossRef Richter SS. Laboratory assays for diagnosis and management of hepatitis C virus infection. J Clin Microbiol. 2002;40:4407–12.CrossRef
8.
go back to reference Wang L, Lv H, Zhang G. Hepatitis C virus core antigen assay: an alternative method for hepatitis C diagnosis. Ann Clin Biochem. 2017;54:279–85.CrossRef Wang L, Lv H, Zhang G. Hepatitis C virus core antigen assay: an alternative method for hepatitis C diagnosis. Ann Clin Biochem. 2017;54:279–85.CrossRef
9.
go back to reference Kuo G, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyamura T, Dienstag JL, Alter MJ, Stevens CE, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989;244:362–4.CrossRef Kuo G, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyamura T, Dienstag JL, Alter MJ, Stevens CE, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989;244:362–4.CrossRef
10.
11.
go back to reference Gupta E, Bajpai M, Choudhary A. Hepatitis C virus: screening, diagnosis, and interpretation of laboratory assays. Asian J Transfus Sci. 2014;8:19–25.CrossRef Gupta E, Bajpai M, Choudhary A. Hepatitis C virus: screening, diagnosis, and interpretation of laboratory assays. Asian J Transfus Sci. 2014;8:19–25.CrossRef
12.
go back to reference Abdel-Hamid M, El-Daly M, El-Kafrawy S, Mikhail N, Strickland G, Fix A. Comparison of second- and third-generation enzyme immunoassays for detecting antibodies to hepatitis C virus. J Clin Microbiol. 2002;40:1656–9.CrossRef Abdel-Hamid M, El-Daly M, El-Kafrawy S, Mikhail N, Strickland G, Fix A. Comparison of second- and third-generation enzyme immunoassays for detecting antibodies to hepatitis C virus. J Clin Microbiol. 2002;40:1656–9.CrossRef
13.
go back to reference Ghuman H. Detection of hepatitis C virus by third generation enzyme immunoassay. Indian J Gastroenterol Off J Indian Soc Gastroenterol. 1995;14:154. Ghuman H. Detection of hepatitis C virus by third generation enzyme immunoassay. Indian J Gastroenterol Off J Indian Soc Gastroenterol. 1995;14:154.
14.
go back to reference Kim S, Kim JH, Yoon S, Park YH, Kim HS. Clinical performance evaluation of four automated chemiluminescence immunoassays for hepatitis C virus antibody detection. J Clin Microbiol. 2008;46:3919–23.CrossRef Kim S, Kim JH, Yoon S, Park YH, Kim HS. Clinical performance evaluation of four automated chemiluminescence immunoassays for hepatitis C virus antibody detection. J Clin Microbiol. 2008;46:3919–23.CrossRef
15.
go back to reference Dufour DR, Talastas M, Fernandez MD, Harris B. Chemiluminescence assay improves specificity of hepatitis C antibody detection. Clin Chem. 2003;49:940–4.CrossRef Dufour DR, Talastas M, Fernandez MD, Harris B. Chemiluminescence assay improves specificity of hepatitis C antibody detection. Clin Chem. 2003;49:940–4.CrossRef
16.
go back to reference Prevention Centers for Disease C. Testing for HCV infection: an update of guidance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep. 2013;62:362–5. Prevention Centers for Disease C. Testing for HCV infection: an update of guidance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep. 2013;62:362–5.
17.
go back to reference Ghany MG, Morgan TR. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America recommendations for testing, managing, and treating hepatitis C virus infection. Hepatology. 2020;71:686–721.CrossRef Ghany MG, Morgan TR. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America recommendations for testing, managing, and treating hepatitis C virus infection. Hepatology. 2020;71:686–721.CrossRef
18.
go back to reference Kodani M, Martin M, de Castro VL, Drobeniuc J, Kamili S. An automated immunoblot method for detection of IgG antibodies to hepatitis C virus: a potential supplemental antibody confirmatory assay. J Clin Microbiol. 2019;57:e01567-18.CrossRef Kodani M, Martin M, de Castro VL, Drobeniuc J, Kamili S. An automated immunoblot method for detection of IgG antibodies to hepatitis C virus: a potential supplemental antibody confirmatory assay. J Clin Microbiol. 2019;57:e01567-18.CrossRef
19.
go back to reference Vermeersch P, Van Ranst M, Lagrou K. Validation of a strategy for HCV antibody testing with two enzyme immunoassays in a routine clinical laboratory. J Clin Virol. 2008;42:394–8.CrossRef Vermeersch P, Van Ranst M, Lagrou K. Validation of a strategy for HCV antibody testing with two enzyme immunoassays in a routine clinical laboratory. J Clin Virol. 2008;42:394–8.CrossRef
20.
go back to reference Chang L, Zhao J, Guo F, Ji H, Zhang L, Jiang X, Wang L. Demographic characteristics of transfusion-transmitted infections among blood donors in China. BMC Infect Dis. 2019;19:514.CrossRef Chang L, Zhao J, Guo F, Ji H, Zhang L, Jiang X, Wang L. Demographic characteristics of transfusion-transmitted infections among blood donors in China. BMC Infect Dis. 2019;19:514.CrossRef
21.
go back to reference Couroucé A, Janot C. Development of screening and confirmation tests for antibodies to hepatitis C virus. Curr Stud Hematol Blood Transfus. 1994;62:36–48.CrossRef Couroucé A, Janot C. Development of screening and confirmation tests for antibodies to hepatitis C virus. Curr Stud Hematol Blood Transfus. 1994;62:36–48.CrossRef
22.
go back to reference Warkad SD, Song KS, Pal D, Nimse SB. Developments in the HCV screening technologies based on the detection of antigens and antibodies. Sensors. 2019;19:4257.CrossRef Warkad SD, Song KS, Pal D, Nimse SB. Developments in the HCV screening technologies based on the detection of antigens and antibodies. Sensors. 2019;19:4257.CrossRef
23.
go back to reference Vallari DS, Jett BW, Alter HJ, Mimms LT, Holzman R, Shih JW. Serological markers of posttransfusion hepatitis C viral infection. J Clin Microbiol. 1992;30:552–6.CrossRef Vallari DS, Jett BW, Alter HJ, Mimms LT, Holzman R, Shih JW. Serological markers of posttransfusion hepatitis C viral infection. J Clin Microbiol. 1992;30:552–6.CrossRef
24.
go back to reference Mondelli MU, Cerino A, Boender P, Oudshoorn P, Middeldorp J, Fipaldini C, La Monica N, Habets W. Significance of the immune response to a major, conformational B-cell epitope on the hepatitis C virus NS3 region defined by a human monoclonal antibody. J Virol. 1994;68:4829–36.CrossRef Mondelli MU, Cerino A, Boender P, Oudshoorn P, Middeldorp J, Fipaldini C, La Monica N, Habets W. Significance of the immune response to a major, conformational B-cell epitope on the hepatitis C virus NS3 region defined by a human monoclonal antibody. J Virol. 1994;68:4829–36.CrossRef
25.
go back to reference Rafik M, Bakr S, Soliman D, Mohammed N, Ragab D, ElHady WA, Samir N. Characterization of differential antibody production against hepatitis C virus in different HCV infection status. Virol J. 2016;13:116.CrossRef Rafik M, Bakr S, Soliman D, Mohammed N, Ragab D, ElHady WA, Samir N. Characterization of differential antibody production against hepatitis C virus in different HCV infection status. Virol J. 2016;13:116.CrossRef
26.
go back to reference Beld M, Penning M, van Putten M, Lukashov V, van den Hoek A, McMorrow M, Goudsmit J. Quantitative antibody responses to structural (Core) and nonstructural (NS3, NS4, and NS5) hepatitis C virus proteins among seroconverting injecting drug users: impact of epitope variation and relationship to detection of HCV RNA in blood. Hepatology. 1999;29:1288–98.CrossRef Beld M, Penning M, van Putten M, Lukashov V, van den Hoek A, McMorrow M, Goudsmit J. Quantitative antibody responses to structural (Core) and nonstructural (NS3, NS4, and NS5) hepatitis C virus proteins among seroconverting injecting drug users: impact of epitope variation and relationship to detection of HCV RNA in blood. Hepatology. 1999;29:1288–98.CrossRef
27.
go back to reference Couroucé AM, Barin F, Botté C, Lunel Fabiani F, Maisonneuve P, Maniez M, Trepo C. A comparative evaluation of the sensitivity of seven anti-hepatitis C virus screening tests. Vox Sang. 1995;69:213–6.CrossRef Couroucé AM, Barin F, Botté C, Lunel Fabiani F, Maisonneuve P, Maniez M, Trepo C. A comparative evaluation of the sensitivity of seven anti-hepatitis C virus screening tests. Vox Sang. 1995;69:213–6.CrossRef
28.
go back to reference Chien DY, Choo QL, Tabrizi A, Kuo C, McFarland J, Berger K, Lee C, Shuster JR, Nguyen T, Moyer DL. Diagnosis of hepatitis C virus (HCV) infection using an immunodominant chimeric polyprotein to capture circulating antibodies: reevaluation of the role of HCV in liver disease. Proc Natl Acad Sci USA. 1992;89:10011–5.CrossRef Chien DY, Choo QL, Tabrizi A, Kuo C, McFarland J, Berger K, Lee C, Shuster JR, Nguyen T, Moyer DL. Diagnosis of hepatitis C virus (HCV) infection using an immunodominant chimeric polyprotein to capture circulating antibodies: reevaluation of the role of HCV in liver disease. Proc Natl Acad Sci USA. 1992;89:10011–5.CrossRef
29.
go back to reference Amanna IJ, Slifka MK. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol Rev. 2010;236:125–38.CrossRef Amanna IJ, Slifka MK. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol Rev. 2010;236:125–38.CrossRef
30.
go back to reference Andraud M, Lejeune O, Musoro JZ, Ogunjimi B, Beutels P, Hens N. Living on three time scales: the dynamics of plasma cell and antibody populations illustrated for hepatitis a virus. PLoS Comput Biol. 2012;8:e1002418.CrossRef Andraud M, Lejeune O, Musoro JZ, Ogunjimi B, Beutels P, Hens N. Living on three time scales: the dynamics of plasma cell and antibody populations illustrated for hepatitis a virus. PLoS Comput Biol. 2012;8:e1002418.CrossRef
Metadata
Title
A study based on four immunoassays: Hepatitis C virus antibody against different antigens may have unequal contributions to detection
Authors
Xinyi Jiang
Le Chang
Ying Yan
Huimin Ji
Huizhen Sun
Fei Guo
Lunan Wang
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Hepatitis C
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01608-x

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue