Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Chloroquin | Research

Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice

Authors: Chao Shang, Xinyu Zhuang, He Zhang, Yiquan Li, Yilong Zhu, Jing Lu, Chenchen Ge, Jianan Cong, Tingyu Li, Mingyao Tian, Ningyi Jin, Xiao Li

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and broke out as a global pandemic in late 2019. The acidic pH environment of endosomes is believed to be essential for SARS-CoV-2 to be able to enter cells and begin replication. However, the clinical use of endosomal acidification inhibitors, typically chloroquine, has been controversial with this respect.

Methods

In this study, RT-qPCR method was used to detect the SARS-CoV-2N gene to evaluate viral replication. The CCK-8 assay was also used to evaluate the cytotoxic effect of SARS-CoV-2. In situ hybridization was used to examine the distribution of the SARS-CoV-2 gene in lung tissues. Hematoxylin and eosin staining was also used to evaluate virus-associated pathological changes in lung tissues.

Results

In this study, analysis showed that endosomal acidification inhibitors, including chloroquine, bafilomycin A1 and NH4CL, significantly reduced the viral yields of SARS-CoV-2 in Vero E6, Huh-7 and 293T-ACE2 cells. Chloroquine and bafilomycin A1 also improved the viability and proliferation of Vero E6 cells after SARS-CoV-2 infection. Moreover, in the hACE2 transgenic mice model of SARS-CoV-2 infection, chloroquine and bafilomycin A1 reduced viral replication in lung tissues and alleviated viral pneumonia with reduced inflammatory exudation and infiltration in peribronchiolar and perivascular tissues, as well as improved structures of alveolar septum and pulmonary alveoli.

Conclusions

Our research investigated the antiviral effects of endosomal acidification inhibitors against SARS-CoV-2 in several infection models and provides an experimental basis for further mechanistic studies and drug development.
Literature
1.
go back to reference Zhu N, Zhang D, Wang W, Li X, Tan W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8). Zhu N, Zhang D, Wang W, Li X, Tan W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8).
2.
go back to reference Gorbalenya AE, Baker SC, Baric RS, Groot RJD, Ziebuhr J.The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(5). Gorbalenya AE, Baker SC, Baric RS, Groot RJD, Ziebuhr J.The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(5).
3.
go back to reference Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens Res. 2020;43(7):648–54.CrossRef Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens Res. 2020;43(7):648–54.CrossRef
4.
go back to reference Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–33.CrossRef Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–33.CrossRef
5.
go back to reference Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4). Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4).
6.
go back to reference Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1). Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1).
7.
go back to reference Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ (online). 2020;369:m1432. Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ (online). 2020;369:m1432.
8.
go back to reference Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–9.CrossRef Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–9.CrossRef
9.
go back to reference Wang M, Cao R, Zhang L, Yang X, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.CrossRef Wang M, Cao R, Zhang L, Yang X, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.CrossRef
10.
go back to reference Xueting Y, Fei Y, Miao Z, Cheng C, Baoying H, Peihua N, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15). Xueting Y, Fei Y, Miao Z, Cheng C, Baoying H, Peihua N, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15).
11.
go back to reference Hoffmann M, Msbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. Hoffmann M, Msbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature.
12.
go back to reference Maisonnasse P, Guedj J, Contreras V, Behillil S, Grand RL. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020:1–8. Maisonnasse P, Guedj J, Contreras V, Behillil S, Grand RL. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020:1–8.
13.
go back to reference Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875.CrossRef Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875.CrossRef
14.
go back to reference Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature.
15.
go back to reference Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807). Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807).
16.
go back to reference Bao L, Deng W, Huang B, Gao H, Qin C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020:1–6. Bao L, Deng W, Huang B, Gao H, Qin C. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020:1–6.
17.
go back to reference Ou X, Liu Y, Lei X, Li P, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1). Ou X, Liu Y, Lei X, Li P, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1).
18.
go back to reference Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.
19.
go back to reference Runfeng L, Yunlong H, Jicheng H, Weiqi P, Zifeng Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761.CrossRef Runfeng L, Yunlong H, Jicheng H, Weiqi P, Zifeng Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761.CrossRef
20.
go back to reference Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182(5):1271-83e16.CrossRef Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182(5):1271-83e16.CrossRef
21.
go back to reference Bai Z, Gao M, Zhang H, Guan Q, Xu J, Li Y, et al. BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Taxol cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett. 2017;402:81–92.CrossRef Bai Z, Gao M, Zhang H, Guan Q, Xu J, Li Y, et al. BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Taxol cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett. 2017;402:81–92.CrossRef
22.
go back to reference Sun Y, Tien P. From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Crit Rev Microbiol. 2013;39(2):166–79.CrossRef Sun Y, Tien P. From endocytosis to membrane fusion: emerging roles of dynamin in virus entry. Crit Rev Microbiol. 2013;39(2):166–79.CrossRef
23.
go back to reference Barrow E, Nicola AV, Liu J. Multiscale perspectives of virus entry via endocytosis. Virol J. 2013;10. Barrow E, Nicola AV, Liu J. Multiscale perspectives of virus entry via endocytosis. Virol J. 2013;10.
24.
go back to reference Liu J, Cao R, Xu M, Wang X, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. Liu J, Cao R, Xu M, Wang X, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov.
25.
go back to reference Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290.CrossRef Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290.CrossRef
Metadata
Title
Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice
Authors
Chao Shang
Xinyu Zhuang
He Zhang
Yiquan Li
Yilong Zhu
Jing Lu
Chenchen Ge
Jianan Cong
Tingyu Li
Mingyao Tian
Ningyi Jin
Xiao Li
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01515-1

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue