Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Research

Ever-increasing viral diversity associated with the red imported fire ant Solenopsis invicta (Formicidae: Hymenoptera)

Authors: César Augusto Diniz Xavier, Margaret Louise Allen, Anna Elizabeth Whitfield

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas.

Methods

Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank’s Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed.

Results

We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta.

Conclusions

The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 2018;63:31–45.PubMedCrossRef Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 2018;63:31–45.PubMedCrossRef
2.
go back to reference Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;29(4):05378. Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;29(4):05378.
3.
go back to reference Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540(7634):539–43.PubMedCrossRef Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540(7634):539–43.PubMedCrossRef
4.
go back to reference Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15(12). Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019;15(12).
5.
go back to reference Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J Virol. 2017;91(17):00680–717.CrossRef Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J Virol. 2017;91(17):00680–717.CrossRef
6.
go back to reference Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, et al. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007–2017). Rev Med Virol. 2019;29(6):13.CrossRef Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, et al. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007–2017). Rev Med Virol. 2019;29(6):13.CrossRef
7.
go back to reference Faizah AN, Kobayashi D, Isawa H, Amoa-Bosompem M, Murota K, Higa Y, et al. Deciphering the virome of Culex vishnui subgroup mosquitoes, the major vectors of japanese encephalitis, in Japan. Viruses. 2020;12(3). Faizah AN, Kobayashi D, Isawa H, Amoa-Bosompem M, Murota K, Higa Y, et al. Deciphering the virome of Culex vishnui subgroup mosquitoes, the major vectors of japanese encephalitis, in Japan. Viruses. 2020;12(3).
8.
go back to reference Pettersson JH, Shi M, Eden JS, Holmes EC, Hesson JC. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses. 2019;11(11). Pettersson JH, Shi M, Eden JS, Holmes EC, Hesson JC. Meta-transcriptomic comparison of the RNA viromes of the mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses. 2019;11(11).
9.
go back to reference Kleanthous E, Olendraite I, Lukhovitskaya NI, Firth AE. Discovery of three RNA viruses using ant transcriptomic datasets. Adv Virol. 2019;164(2):643–7 (Epub 2018/11/10). Kleanthous E, Olendraite I, Lukhovitskaya NI, Firth AE. Discovery of three RNA viruses using ant transcriptomic datasets. Adv Virol. 2019;164(2):643–7 (Epub 2018/11/10).
10.
go back to reference Dhaygude K, Johansson H, Kulmuni J, Sundström L. Genome organization and molecular characterization of the three Formica exsecta viruses-FeV1, FeV2 and FeV4. PeerJ. 2019;20(6). Dhaygude K, Johansson H, Kulmuni J, Sundström L. Genome organization and molecular characterization of the three Formica exsecta viruses-FeV1, FeV2 and FeV4. PeerJ. 2019;20(6).
11.
go back to reference Valles SM, Rivers AR. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes. 2019;55(3):368–80.PubMedCrossRef Valles SM, Rivers AR. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes. 2019;55(3):368–80.PubMedCrossRef
12.
go back to reference Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 2015;132:1–41.PubMedCrossRef Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 2015;132:1–41.PubMedCrossRef
13.
go back to reference Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.PubMedCrossRef Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther. 2016;24(3):447–57.PubMedCrossRef
14.
go back to reference Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv Genet. 2019;20(4):671–90.CrossRef Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. Conserv Genet. 2019;20(4):671–90.CrossRef
15.
go back to reference Porter SD, Savignano DA. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology. 1990;71(6):2095–106.CrossRef Porter SD, Savignano DA. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology. 1990;71(6):2095–106.CrossRef
16.
go back to reference Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52(3):273–88.CrossRef Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52(3):273–88.CrossRef
17.
go back to reference Callcott A-MA, Collins HL. Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918–1995. The Florida Entomologist. 1996;79(2):240–51. Callcott A-MA, Collins HL. Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918–1995. The Florida Entomologist. 1996;79(2):240–51.
18.
go back to reference Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, et al. Global invasion history of the fire ant Solenopsis invicta. Science. 2011;331(6020):1066–8.PubMedCrossRef Ascunce MS, Yang C-C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, et al. Global invasion history of the fire ant Solenopsis invicta. Science. 2011;331(6020):1066–8.PubMedCrossRef
19.
go back to reference Shoemaker DD, Ahrens M, Sheill L, Mescher M, Keller L, Ross KG. Distribution and prevalence of Wolbachia Infections in native populations of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol. 2003;32(6):1329–36.CrossRef Shoemaker DD, Ahrens M, Sheill L, Mescher M, Keller L, Ross KG. Distribution and prevalence of Wolbachia Infections in native populations of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol. 2003;32(6):1329–36.CrossRef
20.
go back to reference Bouwma AM, Ahrens ME, DeHeer CJ, DeWayne SD. Distribution and prevalence of Wolbachia in introduced populations of the fire ant Solenopsis invicta. Insect Mol Biol. 2006;15(1):89–93.PubMedCrossRef Bouwma AM, Ahrens ME, DeHeer CJ, DeWayne SD. Distribution and prevalence of Wolbachia in introduced populations of the fire ant Solenopsis invicta. Insect Mol Biol. 2006;15(1):89–93.PubMedCrossRef
21.
go back to reference Yang C-C, Yu Y-C, Valles SM, Oi DH, Chen Y-C, Shoemaker D, et al. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions. 2010;12(9):3307–18.CrossRef Yang C-C, Yu Y-C, Valles SM, Oi DH, Chen Y-C, Shoemaker D, et al. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions. 2010;12(9):3307–18.CrossRef
22.
go back to reference Porter SD, Fowler HG, Mackay WP. Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J Econ Entomol. 1992;85(4):1154–61.CrossRef Porter SD, Fowler HG, Mackay WP. Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J Econ Entomol. 1992;85(4):1154–61.CrossRef
23.
go back to reference Morrison LW, Porter SD, Daniels E, Korzukhin MD. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions. 2004;6(2):183–91.CrossRef Morrison LW, Porter SD, Daniels E, Korzukhin MD. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions. 2004;6(2):183–91.CrossRef
24.
go back to reference Drees BM, Calixto AA, Nester PR. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Insect Science. 2013;20(4):429–38.PubMedCrossRef Drees BM, Calixto AA, Nester PR. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Insect Science. 2013;20(4):429–38.PubMedCrossRef
25.
go back to reference Valles SM, Porter SD, Choi M-Y, Oi DH. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations. J Invertebr Pathol. 2013;113(3):198–204.PubMedCrossRef Valles SM, Porter SD, Choi M-Y, Oi DH. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations. J Invertebr Pathol. 2013;113(3):198–204.PubMedCrossRef
26.
go back to reference Oi D, Valles S, Porter S, Cavanaugh C, White G, Henke J. Introduction of fire ant biological control agents into the Coachella Valley of California. Florida Entomologist. 2019;102(1):284–6, 3. Oi D, Valles S, Porter S, Cavanaugh C, White G, Henke J. Introduction of fire ant biological control agents into the Coachella Valley of California. Florida Entomologist. 2019;102(1):284–6, 3.
27.
go back to reference Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, et al. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology. 2004;328(1):151–7.PubMedCrossRef Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, et al. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology. 2004;328(1):151–7.PubMedCrossRef
28.
go back to reference Valles SM, Hashimoto Y. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant Solenopsis invicta. Virology. 2009;388(2):354–61.PubMedCrossRef Valles SM, Hashimoto Y. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant Solenopsis invicta. Virology. 2009;388(2):354–61.PubMedCrossRef
29.
go back to reference Valles SM, Strong CA, Hashimoto Y. A new positive-strand RNA virus with unique genome characteristics from the red imported fire ant Solenopsis invicta. Virology. 2007;365(2):457–63.PubMedCrossRef Valles SM, Strong CA, Hashimoto Y. A new positive-strand RNA virus with unique genome characteristics from the red imported fire ant Solenopsis invicta. Virology. 2007;365(2):457–63.PubMedCrossRef
30.
go back to reference Valles SM, Porter SD, Calcaterra LA. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One. 2018;13(2). Valles SM, Porter SD, Calcaterra LA. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One. 2018;13(2).
31.
go back to reference Allen ML. Near-complete genome sequences of new strain of Nylanderia Fulva Virus 1 from Solenopsis invicta. Microbiol Resour Announc. 2020;9(15):00798–819.CrossRef Allen ML. Near-complete genome sequences of new strain of Nylanderia Fulva Virus 1 from Solenopsis invicta. Microbiol Resour Announc. 2020;9(15):00798–819.CrossRef
32.
go back to reference Valles SM, Shoemaker D, Wurm Y, Strong CA, Varone L, Becnel JJ, et al. Discovery and molecular characterization of an ambisense densovirus from South American populations of Solenopsis invicta. Biol Control. 2013;67(3):431–9.CrossRef Valles SM, Shoemaker D, Wurm Y, Strong CA, Varone L, Becnel JJ, et al. Discovery and molecular characterization of an ambisense densovirus from South American populations of Solenopsis invicta. Biol Control. 2013;67(3):431–9.CrossRef
33.
go back to reference Manfredini F, Shoemaker D, Grozinger CM. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol Evol. 2015;6(1):233–44.PubMedPubMedCentralCrossRef Manfredini F, Shoemaker D, Grozinger CM. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta). Ecol Evol. 2015;6(1):233–44.PubMedPubMedCentralCrossRef
34.
go back to reference Hsu H-W, Chiu M-C, Shoemaker D, Yang C-CS. Viral infections in fire ants lead to reduced foraging activity and dietary changes. Sci. Rep. 2018;8(1):13498. Hsu H-W, Chiu M-C, Shoemaker D, Yang C-CS. Viral infections in fire ants lead to reduced foraging activity and dietary changes. Sci. Rep. 2018;8(1):13498.
35.
go back to reference Valles SM. Positive-strand RNA viruses infecting the red imported fire ant, Solenopsis invicta. Psyche. 2012;2012:821591. Valles SM. Positive-strand RNA viruses infecting the red imported fire ant, Solenopsis invicta. Psyche. 2012;2012:821591.
36.
go back to reference Allen ML, Rhoades JH, Sparks ME, Grodowitz MJ. Differential gene expression in red imported fire ant (Solenopsis invicta) (Hymenoptera: Formicidae) larval and pupal stages. Insects. 2018;9(4). Allen ML, Rhoades JH, Sparks ME, Grodowitz MJ. Differential gene expression in red imported fire ant (Solenopsis invicta) (Hymenoptera: Formicidae) larval and pupal stages. Insects. 2018;9(4).
37.
go back to reference Morandin C, Tin MMY, Abril S, Gómez C, Pontieri L, Schiøtt M, et al. Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol. 2016;17(1):43.PubMedPubMedCentralCrossRef Morandin C, Tin MMY, Abril S, Gómez C, Pontieri L, Schiøtt M, et al. Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biol. 2016;17(1):43.PubMedPubMedCentralCrossRef
38.
go back to reference Fontana S, Chang N-C, Chang T, Lee C-C, Dang V-D, Wang J. The fire ant social supergene is characterized by extensive gene and transposable element copy number variation. Mol Ecol. 2020;29(1):105–20.PubMedCrossRef Fontana S, Chang N-C, Chang T, Lee C-C, Dang V-D, Wang J. The fire ant social supergene is characterized by extensive gene and transposable element copy number variation. Mol Ecol. 2020;29(1):105–20.PubMedCrossRef
39.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
40.
go back to reference Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. Epub 2012/02/22. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42. Epub 2012/02/22.
41.
go back to reference Bewick V, Cheek L, Ball J. Statistics review 10: further nonparametric methods. Critical Care (London, England). 2004;8(3):196–9 (Epub 2004/04/16).CrossRef Bewick V, Cheek L, Ball J. Statistics review 10: further nonparametric methods. Critical Care (London, England). 2004;8(3):196–9 (Epub 2004/04/16).CrossRef
43.
go back to reference Di Giallonardo F, Schlub TE, Shi M, Holmes EC. Dinucleotide composition in animal RNA viruses is shaped more by virus family than by host species. J Virol. 2017;91(8):e02381-e2416.PubMedPubMedCentralCrossRef Di Giallonardo F, Schlub TE, Shi M, Holmes EC. Dinucleotide composition in animal RNA viruses is shaped more by virus family than by host species. J Virol. 2017;91(8):e02381-e2416.PubMedPubMedCentralCrossRef
44.
go back to reference Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol. 2010;84(19):10322–8.PubMedPubMedCentralCrossRef Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol. 2010;84(19):10322–8.PubMedPubMedCentralCrossRef
46.
go back to reference Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 207–32. Charif D, Lobry JR. SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural Approaches to Sequence Evolution: Molecules, Networks, Populations. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 207–32.
48.
go back to reference Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol. 2013;87(5):2475–88 (Epub 2012/12/19).PubMedPubMedCentralCrossRef Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol. 2013;87(5):2475–88 (Epub 2012/12/19).PubMedPubMedCentralCrossRef
49.
go back to reference Toriyama S, Kimishima T, Takahashi M, Shimizu T, Minaka N, Akutsu K. The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. J Gen Virol. 1998;79(8):2051–8.PubMedCrossRef Toriyama S, Kimishima T, Takahashi M, Shimizu T, Minaka N, Akutsu K. The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. J Gen Virol. 1998;79(8):2051–8.PubMedCrossRef
50.
go back to reference Valles SM, Oi DH, Becnel JJ, Wetterer JK, LaPolla JS, Firth AE. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology. 2016;496:244–54 (Epub 2016/06/30).PubMedCrossRef Valles SM, Oi DH, Becnel JJ, Wetterer JK, LaPolla JS, Firth AE. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology. 2016;496:244–54 (Epub 2016/06/30).PubMedCrossRef
51.
go back to reference Williams SH, Levy A, Yates RA, Somaweera N, Neville PJ, Nicholson J, et al. The diversity and distribution of viruses associated with Culex annulirostris mosquitoes from the Kimberley region of western Australia. Viruses. 2020;12(7):717.PubMedCentralCrossRef Williams SH, Levy A, Yates RA, Somaweera N, Neville PJ, Nicholson J, et al. The diversity and distribution of viruses associated with Culex annulirostris mosquitoes from the Kimberley region of western Australia. Viruses. 2020;12(7):717.PubMedCentralCrossRef
52.
go back to reference Valles SM, Strong CA, Hunter WB, Dang PM, Pereira RM, Oi DH, et al. Expressed sequence tags from the red imported fire ant, Solenopsis invicta: annotation and utilization for discovery of viruses. J Invertebr Pathol. 2008;99(1):74–81.PubMedCrossRef Valles SM, Strong CA, Hunter WB, Dang PM, Pereira RM, Oi DH, et al. Expressed sequence tags from the red imported fire ant, Solenopsis invicta: annotation and utilization for discovery of viruses. J Invertebr Pathol. 2008;99(1):74–81.PubMedCrossRef
53.
go back to reference Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol. 1998;36:139–63.PubMedCrossRef Falk BW, Tsai JH. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol. 1998;36:139–63.PubMedCrossRef
54.
go back to reference Liu W, Hajano JU, Wang X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr Opin Virol. 2018;33:13–7.PubMedCrossRef Liu W, Hajano JU, Wang X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr Opin Virol. 2018;33:13–7.PubMedCrossRef
55.
go back to reference Nault LR, Gordon DT. Multiplication of Maize Stripe Virus in Peregrinus maidis. Phytopathology. 1988;78(7):991–5.CrossRef Nault LR, Gordon DT. Multiplication of Maize Stripe Virus in Peregrinus maidis. Phytopathology. 1988;78(7):991–5.CrossRef
56.
go back to reference Sicard A, Yvon M, Timchenko T, Gronenborn B, Michalakis Y, Gutierrez S, et al. Gene copy number is differentially regulated in a multipartite virus. Nat Commun. 2013;4(2248). Sicard A, Yvon M, Timchenko T, Gronenborn B, Michalakis Y, Gutierrez S, et al. Gene copy number is differentially regulated in a multipartite virus. Nat Commun. 2013;4(2248).
57.
go back to reference Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host evolution of segments ratio for the tripartite genome of Alfalfa mosaic virus. Sci Rep. 2017;7(1):5004.PubMedPubMedCentralCrossRef Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host evolution of segments ratio for the tripartite genome of Alfalfa mosaic virus. Sci Rep. 2017;7(1):5004.PubMedPubMedCentralCrossRef
58.
go back to reference Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments. Virus Evol. 2020;6(1). Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments. Virus Evol. 2020;6(1).
59.
go back to reference Zhang C, Pei X, Wang Z, Jia S, Guo S, Zhang Y, et al. The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology. 2012;425(2):113–21.PubMedCrossRef Zhang C, Pei X, Wang Z, Jia S, Guo S, Zhang Y, et al. The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology. 2012;425(2):113–21.PubMedCrossRef
Metadata
Title
Ever-increasing viral diversity associated with the red imported fire ant Solenopsis invicta (Formicidae: Hymenoptera)
Authors
César Augusto Diniz Xavier
Margaret Louise Allen
Anna Elizabeth Whitfield
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01469-w

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue