Skip to main content
Top
Published in: Virology Journal 1/2020

01-12-2020 | Influenza Virus | Research

Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin

Authors: Jialing Wu, Yang Wang, Ying Wei, Zhichao Xu, Xin Tan, Zhihui Wu, Jing Zheng, George Dacai Liu, Yongchang Cao, Chunyi Xue

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

Hemagglutinin (HA), as the surface immunogenic protein, is the most important component of influenza viruses. Previous studies showed that the stability of HA was significant for HA’s immunogenicity, and many efforts have been made to stabilize the expressed HA proteins.

Methods

In this study, the protein disulfide isomerases (PDIs) were investigated for the ability to improve the stability of HA protein. Two members of the PDIs family, PDI and ERp57, were over-expressed or down-expressed in 293 T cells. The expression of H3 HA and PDIs were investigated by real-time qPCR, western-blot, immunofluorescence assay, and flow cytometry. The stability of HA was investigated by western-blot under non-reducing condition. Moreover, BALB/c mice were immunized subcutaneously twice with the vaccine that contained HA proteins from the ERp57-overexpressed and conventional 293 T cells respectively to investigate the impact of ERp57 on the immunogenicity of H3N2 HA.

Results

The percentage of the disulfide-bonded HA trimers increased significantly in the PDIs-overexpressed 293 T cells, and ERp57 was more valid to the stability of HA than PDI. The knockdown of ERp57 by small interfering RNA significantly decreased the percentage of the disulfide-bonded HA trimers. HA proteins from ERp57-overexpressed 293 T cells stimulated the mice to generate significantly higher HA-specific IgG against H1N1 and H3N2 viruses than those from the conventional cells. The mice receiving H3 HA from ERp57-overexpressed 293 T cells showed the better resistance against H1N1 viruses and the higher survival rate than the mice receiving H3 HA from the conventional cells.

Conclusion

ERp57 could improve the stability and immunogenicity of H3N2 HA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci. 2014;1323:115–39.CrossRef Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci. 2014;1323:115–39.CrossRef
2.
go back to reference Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med. 2013;64:189–202.CrossRef Pica N, Palese P. Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med. 2013;64:189–202.CrossRef
3.
go back to reference Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14:167–82.CrossRef Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14:167–82.CrossRef
4.
go back to reference Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect. 2017;23:222–8.CrossRef Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect. 2017;23:222–8.CrossRef
5.
go back to reference Houser K, Subbarao K. Influenza vaccines: challenges and solutions. Cell Host Microbe. 2015;17:295–300.CrossRef Houser K, Subbarao K. Influenza vaccines: challenges and solutions. Cell Host Microbe. 2015;17:295–300.CrossRef
6.
go back to reference Tatulian SA, Tamm LK. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry. 2000;39:496–507.CrossRef Tatulian SA, Tamm LK. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry. 2000;39:496–507.CrossRef
7.
go back to reference Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49–53.CrossRef Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49–53.CrossRef
8.
go back to reference Chang DK, Cheng SF, Kantchev EA, Lin CH, Liu YT. Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. BMC Biol. 2008;6:2.CrossRef Chang DK, Cheng SF, Kantchev EA, Lin CH, Liu YT. Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. BMC Biol. 2008;6:2.CrossRef
9.
go back to reference Kim SM, Kim YI, Park SJ, Kim EH, Kwon HI, Si YJ, Lee IW, Song MS, Choi YK. Vaccine efficacy of inactivated, chimeric Hemagglutinin H9/H5N2 avian influenza virus and its suitability for the marker vaccine strategy. J Virol. 2017;91(6). https://doi.org/10.1128/JVI.01693-16. Kim SM, Kim YI, Park SJ, Kim EH, Kwon HI, Si YJ, Lee IW, Song MS, Choi YK. Vaccine efficacy of inactivated, chimeric Hemagglutinin H9/H5N2 avian influenza virus and its suitability for the marker vaccine strategy. J Virol. 2017;91(6). https://​doi.​org/​10.​1128/​JVI.​01693-16.
11.
go back to reference Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 2011;208:181–93.CrossRef Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 2011;208:181–93.CrossRef
12.
go back to reference Krammer F, Palese P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 2013;3:521–30.CrossRef Krammer F, Palese P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 2013;3:521–30.CrossRef
13.
go back to reference Mineev KS, Lyukmanova EN, Krabben L, Serebryakova MV, Shulepko MA, Arseniev AS, Kordyukova LV, Veit M. Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Eng Des Sel. 2013;26:547–52.CrossRef Mineev KS, Lyukmanova EN, Krabben L, Serebryakova MV, Shulepko MA, Arseniev AS, Kordyukova LV, Veit M. Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Eng Des Sel. 2013;26:547–52.CrossRef
14.
go back to reference Xu S, Zhou J, Liu K, Liu Q, Xue C, Li X, Zheng J, Luo D, Cao Y. Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza a H3N2 virus affect HA thermal stability and fusion activity. Virus Genes. 2013;47:20–6.CrossRef Xu S, Zhou J, Liu K, Liu Q, Xue C, Li X, Zheng J, Luo D, Cao Y. Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza a H3N2 virus affect HA thermal stability and fusion activity. Virus Genes. 2013;47:20–6.CrossRef
15.
go back to reference Xu S, Zhou J, Liu Q, Liu K, Xue C, Li X, Zheng J, Luo D, Cao Y. Evidences for the existence of intermolecular disulfide-bonded oligomers in the H3 hemagglutinins expressed in insect cells. Virus Genes. 2014;48:304–11.CrossRef Xu S, Zhou J, Liu Q, Liu K, Xue C, Li X, Zheng J, Luo D, Cao Y. Evidences for the existence of intermolecular disulfide-bonded oligomers in the H3 hemagglutinins expressed in insect cells. Virus Genes. 2014;48:304–11.CrossRef
16.
go back to reference Liu Q, Liu K, Xue C, Zhou J, Li X, Luo D, Zheng J, Xu S, Liu GD, Cao Y. Recombinant influenza H1, H5 and H9 hemagglutinins containing replaced H3 hemagglutinin transmembrane domain showed enhanced heterosubtypic protection in mice. Vaccine. 2014;32:3041–9.CrossRef Liu Q, Liu K, Xue C, Zhou J, Li X, Luo D, Zheng J, Xu S, Liu GD, Cao Y. Recombinant influenza H1, H5 and H9 hemagglutinins containing replaced H3 hemagglutinin transmembrane domain showed enhanced heterosubtypic protection in mice. Vaccine. 2014;32:3041–9.CrossRef
17.
go back to reference Zhou J, Xu S, Ma J, Lei W, Liu K, Liu Q, Ren Y, Xue C, Cao Y. Recombinant influenza a H3N2 viruses with mutations of HA transmembrane cysteines exhibited altered virological characteristics. Virus Genes. 2014;48:273–82.CrossRef Zhou J, Xu S, Ma J, Lei W, Liu K, Liu Q, Ren Y, Xue C, Cao Y. Recombinant influenza a H3N2 viruses with mutations of HA transmembrane cysteines exhibited altered virological characteristics. Virus Genes. 2014;48:273–82.CrossRef
18.
go back to reference Liu Q, Xue C, Zheng J, Liu K, Wang Y, Wei Y, Liu GD, Cao Y. Influenza bivalent vaccine comprising recombinant H3 hemagglutinin (HA) and H1 HA containing replaced H3 hemagglutinin transmembrane domain exhibited improved heterosubtypic protection immunity in mice. Vaccine. 2015;33:4035–40.CrossRef Liu Q, Xue C, Zheng J, Liu K, Wang Y, Wei Y, Liu GD, Cao Y. Influenza bivalent vaccine comprising recombinant H3 hemagglutinin (HA) and H1 HA containing replaced H3 hemagglutinin transmembrane domain exhibited improved heterosubtypic protection immunity in mice. Vaccine. 2015;33:4035–40.CrossRef
19.
go back to reference Wang Y, Wu J, Xue C, Wu Z, Lin Y, Wei Y, Wei X, Qin J, Zhang Y, Wen Z, et al. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antivir Res. 2017;143:97–105.CrossRef Wang Y, Wu J, Xue C, Wu Z, Lin Y, Wei Y, Wei X, Qin J, Zhang Y, Wen Z, et al. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antivir Res. 2017;143:97–105.CrossRef
20.
go back to reference Wang Y, Zhang Y, Wu J, Lin Y, Wu Z, Wei Y, Wei X, Qin J, Xue C, Liu GD, Cao Y. Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice. Virus Res. 2017;242:16–23.CrossRef Wang Y, Zhang Y, Wu J, Lin Y, Wu Z, Wei Y, Wei X, Qin J, Xue C, Liu GD, Cao Y. Recombinant influenza H7 hemagglutinin containing CFLLC minidomain in the transmembrane domain showed enhanced cross-protection in mice. Virus Res. 2017;242:16–23.CrossRef
21.
go back to reference Qin J, Zhang Y, Shen X, Gong L, Peng O, Liu Y, Xue C, Cao Y. H7 virus-like particles assembled by hemagglutinin containing H3N2 transmembrane domain and M1 induce broad homologous and heterologous protection in mice. Vaccine. 2018;36:5030–6.CrossRef Qin J, Zhang Y, Shen X, Gong L, Peng O, Liu Y, Xue C, Cao Y. H7 virus-like particles assembled by hemagglutinin containing H3N2 transmembrane domain and M1 induce broad homologous and heterologous protection in mice. Vaccine. 2018;36:5030–6.CrossRef
22.
go back to reference Qin J, Zhang Y, Shen X, Gong L, Xue C, Cao Y. Biological characteristics and immunological properties in Muscovy ducks of H5N6 virus-like particles composed of HA-TM/HA-TMH3 and M1. Avian Pathol. 2019;48:35–44.CrossRef Qin J, Zhang Y, Shen X, Gong L, Xue C, Cao Y. Biological characteristics and immunological properties in Muscovy ducks of H5N6 virus-like particles composed of HA-TM/HA-TMH3 and M1. Avian Pathol. 2019;48:35–44.CrossRef
23.
go back to reference Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.CrossRef Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.CrossRef
24.
go back to reference Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci. 2006;31:455–64.CrossRef Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci. 2006;31:455–64.CrossRef
25.
go back to reference Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal. 2009;11:2807–50.CrossRef Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal. 2009;11:2807–50.CrossRef
26.
go back to reference Freedman RB, Desmond JL, Byrne LJ, Heal JW, Howard MJ, Sanghera N, Walker KL, Wallis AK, Wells SA, Williamson RA, Romer RA. 'Something in the way she moves': the functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). Biochim Biophys Acta. 1865;2017:1383–94. Freedman RB, Desmond JL, Byrne LJ, Heal JW, Howard MJ, Sanghera N, Walker KL, Wallis AK, Wells SA, Williamson RA, Romer RA. 'Something in the way she moves': the functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). Biochim Biophys Acta. 1865;2017:1383–94.
27.
go back to reference Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett. 2007;581:3641–51.CrossRef Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett. 2007;581:3641–51.CrossRef
28.
go back to reference Vandenbroeck K, Martens E, Alloza I. Multi-chaperone complexes regulate the folding of interferon-gamma in the endoplasmic reticulum. Cytokine. 2006;33:264–73.CrossRef Vandenbroeck K, Martens E, Alloza I. Multi-chaperone complexes regulate the folding of interferon-gamma in the endoplasmic reticulum. Cytokine. 2006;33:264–73.CrossRef
29.
go back to reference Hettinghouse A, Liu R, Liu CJ. Multifunctional molecule ERp57: from cancer to neurodegenerative diseases. Pharmacol Ther. 2018;181:34–48.CrossRef Hettinghouse A, Liu R, Liu CJ. Multifunctional molecule ERp57: from cancer to neurodegenerative diseases. Pharmacol Ther. 2018;181:34–48.CrossRef
30.
go back to reference Solda T, Garbi N, Hammerling GJ, Molinari M. Consequences of ERp57 deletion on oxidative folding of obligate and facultative clients of the calnexin cycle. J Biol Chem. 2006;281:6219–26.CrossRef Solda T, Garbi N, Hammerling GJ, Molinari M. Consequences of ERp57 deletion on oxidative folding of obligate and facultative clients of the calnexin cycle. J Biol Chem. 2006;281:6219–26.CrossRef
31.
go back to reference Wang K, Holtz KM, Anderson K, Chubet R, Mahmoud W, Cox MM. Expression and purification of an influenza hemagglutinin--one step closer to a recombinant protein-based influenza vaccine. Vaccine. 2006;24:2176–85.CrossRef Wang K, Holtz KM, Anderson K, Chubet R, Mahmoud W, Cox MM. Expression and purification of an influenza hemagglutinin--one step closer to a recombinant protein-based influenza vaccine. Vaccine. 2006;24:2176–85.CrossRef
32.
go back to reference Kang SM, Guo L, Yao Q, Skountzou I, Compans RW. Intranasal immunization with inactivated influenza virus enhances immune responses to coadministered simian-human immunodeficiency virus-like particle antigens. J Virol. 2004;78:9624–32.CrossRef Kang SM, Guo L, Yao Q, Skountzou I, Compans RW. Intranasal immunization with inactivated influenza virus enhances immune responses to coadministered simian-human immunodeficiency virus-like particle antigens. J Virol. 2004;78:9624–32.CrossRef
33.
go back to reference Treanor JJ. Prospects for broadly protective influenza vaccines. Am J Prev Med. 2015;49:S355–63.CrossRef Treanor JJ. Prospects for broadly protective influenza vaccines. Am J Prev Med. 2015;49:S355–63.CrossRef
35.
go back to reference Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine. 2015;33:3314–21.CrossRef Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine. 2015;33:3314–21.CrossRef
36.
go back to reference Victor BL, Baptista AM, Soares CM. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. J Chem Inf Model. 2012;52:3001–12.CrossRef Victor BL, Baptista AM, Soares CM. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. J Chem Inf Model. 2012;52:3001–12.CrossRef
37.
go back to reference Doms RW, Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol. 1986;60:833–9.CrossRef Doms RW, Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol. 1986;60:833–9.CrossRef
38.
go back to reference Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.CrossRef Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.CrossRef
39.
go back to reference Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349:1301–6.CrossRef Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349:1301–6.CrossRef
40.
go back to reference Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong WP, Wang L, Nabel GJ. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–6.CrossRef Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong WP, Wang L, Nabel GJ. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–6.CrossRef
41.
go back to reference Wei CJ, Xu L, Kong WP, Shi W, Canis K, Stevens J, Yang ZY, Dell A, Haslam SM, Wilson IA, Nabel GJ. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol. 2008;82:6200–8.CrossRef Wei CJ, Xu L, Kong WP, Shi W, Canis K, Stevens J, Yang ZY, Dell A, Haslam SM, Wilson IA, Nabel GJ. Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol. 2008;82:6200–8.CrossRef
Metadata
Title
Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin
Authors
Jialing Wu
Yang Wang
Ying Wei
Zhichao Xu
Xin Tan
Zhihui Wu
Jing Zheng
George Dacai Liu
Yongchang Cao
Chunyi Xue
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Influenza Virus
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01325-x

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue