Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Research

Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy

Authors: Xianglong Wu, Renyong Jia, Mingshu Wang, Shun Chen, Mafeng Liu, Dekang Zhu, Xinxin Zhao, Qiao Yang, Ying Wu, Zhongqiong Yin, Shaqiu Zhang, Juan Huang, Ling Zhang, Yunya Liu, Yanling Yu, Leichang Pan, Bin Tian, Mujeeb Ur Rehman, Xiaoyue Chen, Anchun Cheng

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known.

Methods

Quantitative reverse-transcription PCR (qRT-PCR) was used to measure the expression levels of miRNAs(miR-30a-5p) and Beclin-1 mRNA. The miR-30a-5p - Beclin-1 target interactions were determined by Dual luciferase reporter assay (DLRA). Western blotting was utilized to analyze Beclin-1-mediated duck embryo fibroblast (DEF) cells autophagy activity. DEV titers were estimated by the median tissue culture infective dose (TCID50).

Results

The miR-30a-5p was significantly downregulated and the Beclin-1 mRNA was significantly upregulated in DEV-infected DEF cells. DLRA confirmed that miR-30a-5p directly targeted the 3′- UTR of the Beclin-1 gene. Overexpression of miR-30a-5p significantly reduced the expression level of Beclin-1protein (p < 0.05), leading to the decrease of Beclin-1-mediated autophagy activity, which ultimately suppressed DEV replication (P < 0.05). Whereas transfection of miR-30a-5p inhibitor increased Beclin-1-mediated autophagy and triggered DEV replication during the whole process of DEV infection (P < 0.01).

Conclusions

This study shows that miR-30a-5p can inhibit DEV replication through reducing autophagy by targeting Beclin-1. These findings suggest a new insight into virus-host interaction during DEV infection and provide a potential new antiviral therapeutic strategy against DEV infection.
Literature
1.
go back to reference Wang G, Qu Y, Wang F, Hu D, Liu L, Li N, et al. The comprehensive diagnosis and prevention of duck plague in Northwest Shandong province of China. Poult Sci. 2013;92(11):2892–8.PubMedCrossRef Wang G, Qu Y, Wang F, Hu D, Liu L, Li N, et al. The comprehensive diagnosis and prevention of duck plague in Northwest Shandong province of China. Poult Sci. 2013;92(11):2892–8.PubMedCrossRef
2.
go back to reference Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, et al. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q. 2017;37(1):57.PubMedCrossRef Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, et al. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q. 2017;37(1):57.PubMedCrossRef
3.
go back to reference Kaleta EF, Kuczka A, Kühnhold A, Bunzenthal C, Bönner BM, Hanka K, et al. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza a virus of the subtype Asia H5N1. Dtw Deutsche Tierärztliche Wochenschrift. 2007;114(1):3–11.PubMed Kaleta EF, Kuczka A, Kühnhold A, Bunzenthal C, Bönner BM, Hanka K, et al. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza a virus of the subtype Asia H5N1. Dtw Deutsche Tierärztliche Wochenschrift. 2007;114(1):3–11.PubMed
4.
go back to reference Keymer IF, Gough RE. Duck virus enteritis (anatid herpesvirus infection) in mute swans (Cygnus Olor). Avian Pathology. 1986;15(1):161–70.PubMedCrossRef Keymer IF, Gough RE. Duck virus enteritis (anatid herpesvirus infection) in mute swans (Cygnus Olor). Avian Pathology. 1986;15(1):161–70.PubMedCrossRef
5.
go back to reference Metwally SA SD, Glisson JR, McDougald LR, Nolan, LK, Suarez DL, Nair V,. Duck Virus Enteritis (Duck Plague)[M]. In: Diseases of Poultry, 13th Edition 2013:431–40. Metwally SA SD, Glisson JR, McDougald LR, Nolan, LK, Suarez DL, Nair V,. Duck Virus Enteritis (Duck Plague)[M]. In: Diseases of Poultry, 13th Edition 2013:431–40.
6.
go back to reference King AMQ. Virus taxonomy: classification and nomenclature of viruses : ninth report of the international committee on taxonomy of viruses: Elsevier/academic press; 2012. King AMQ. Virus taxonomy: classification and nomenclature of viruses : ninth report of the international committee on taxonomy of viruses: Elsevier/academic press; 2012.
7.
go back to reference Li Y, Huang B, Ma X, Wu J, Li F, Ai W, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391(2):151–61.PubMedCrossRef Li Y, Huang B, Ma X, Wu J, Li F, Ai W, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391(2):151–61.PubMedCrossRef
8.
go back to reference Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160(1):316–25.PubMedCrossRef Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160(1):316–25.PubMedCrossRef
9.
10.
12.
go back to reference Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463.PubMedCrossRef Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463.PubMedCrossRef
13.
go back to reference Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, et al. Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol. 2014;88(1):525.PubMedPubMedCentralCrossRef Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, et al. Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol. 2014;88(1):525.PubMedPubMedCentralCrossRef
14.
go back to reference Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10(1):93–110.PubMedCrossRef Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10(1):93–110.PubMedCrossRef
15.
go back to reference Wang X, Xu X, Wang W, Yu Z, Wen L, He K, et al. MicroRNA-30a-5p promotes replication of porcine circovirus type 2 through enhancing autophagy by targeting 14-3-3. Arch Virol. 2017;22:1–12. Wang X, Xu X, Wang W, Yu Z, Wen L, He K, et al. MicroRNA-30a-5p promotes replication of porcine circovirus type 2 through enhancing autophagy by targeting 14-3-3. Arch Virol. 2017;22:1–12.
16.
go back to reference Chen Q, Fang L, Wang D, Wang S, Li P, Li M, et al. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res. 2012;163(2):650–5.PubMedCrossRef Chen Q, Fang L, Wang D, Wang S, Li P, Li M, et al. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res. 2012;163(2):650–5.PubMedCrossRef
17.
go back to reference Buckingham EM, Carpenter JE, Jackson W, Zerboni L, Arvin AM, Grose C. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection. Proc Natl Acad Sci U S A. 2015;112(1):256–61.PubMedCrossRef Buckingham EM, Carpenter JE, Jackson W, Zerboni L, Arvin AM, Grose C. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection. Proc Natl Acad Sci U S A. 2015;112(1):256–61.PubMedCrossRef
18.
go back to reference Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.PubMedCrossRef
20.
go back to reference Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity. 2009;30(4):588–98.PubMedPubMedCentralCrossRef Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity. 2009;30(4):588–98.PubMedPubMedCentralCrossRef
21.
go back to reference Yin H-C, Zhao L-L, Li S-Q, Niu Y-J, Jiang X-J, Xu L-J, et al. Autophagy activated by duck enteritis virus infection positively affects its replication. J Gen Virol. 2017;98(3):486–95.PubMedCrossRef Yin H-C, Zhao L-L, Li S-Q, Niu Y-J, Jiang X-J, Xu L-J, et al. Autophagy activated by duck enteritis virus infection positively affects its replication. J Gen Virol. 2017;98(3):486–95.PubMedCrossRef
23.
go back to reference Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther. 2010;125(1):92–104.PubMedCrossRef Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther. 2010;125(1):92–104.PubMedCrossRef
25.
go back to reference Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67(1):129–39.PubMedCrossRef Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67(1):129–39.PubMedCrossRef
26.
go back to reference Abeliovich H. Guidelines for the use and interpretation of assays for monitoring autophagy: Haematologica; 2012. 151–75 p. Abeliovich H. Guidelines for the use and interpretation of assays for monitoring autophagy: Haematologica; 2012. 151–75 p.
27.
go back to reference Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol. 2012;44(5):733.PubMedCrossRef Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol. 2012;44(5):733.PubMedCrossRef
28.
go back to reference Yao Y, Smith LP, Nair V, Watson M. An avian retrovirus uses canonical expression and processing mechanisms to generate viral microRNA. J Virol. 2014;88(1):2–9.PubMedPubMedCentralCrossRef Yao Y, Smith LP, Nair V, Watson M. An avian retrovirus uses canonical expression and processing mechanisms to generate viral microRNA. J Virol. 2014;88(1):2–9.PubMedPubMedCentralCrossRef
29.
go back to reference Grey F. Role of microRNAs in herpesvirus latency and persistence. J Gen Virol. 2015;96(4):739–51.PubMedCrossRef Grey F. Role of microRNAs in herpesvirus latency and persistence. J Gen Virol. 2015;96(4):739–51.PubMedCrossRef
30.
31.
go back to reference Zhou H, Chen S, Zhou Q, Wei Y, Wang M, Jia R, et al. Cross-species antiviral activity of goose Interferons against duck plague virus is related to its positive self-feedback regulation and subsequent interferon stimulated genes induction. Viruses. 2016;8(7):195.PubMedCentralCrossRef Zhou H, Chen S, Zhou Q, Wei Y, Wang M, Jia R, et al. Cross-species antiviral activity of goose Interferons against duck plague virus is related to its positive self-feedback regulation and subsequent interferon stimulated genes induction. Viruses. 2016;8(7):195.PubMedCentralCrossRef
32.
go back to reference Chen S, Zhang W, Zhou Q, Wang A, Sun L, Wang M, et al. Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. J Gen Virol. 2017;98(6):1455–66.PubMedCrossRef Chen S, Zhang W, Zhou Q, Wang A, Sun L, Wang M, et al. Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. J Gen Virol. 2017;98(6):1455–66.PubMedCrossRef
33.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–7.CrossRef Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol. 1938;27(3):493–7.CrossRef
34.
go back to reference Wu X, Jia R, Zhou J, Wang M, Chen S, Liu M, et al. Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs. BMC Vet Res. 2018;14(1):144.PubMedPubMedCentralCrossRef Wu X, Jia R, Zhou J, Wang M, Chen S, Liu M, et al. Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs. BMC Vet Res. 2018;14(1):144.PubMedPubMedCentralCrossRef
35.
go back to reference Xu R, Liu S, Chen H, Lao L. MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep. 2016;35(3):1757.PubMedCrossRef Xu R, Liu S, Chen H, Lao L. MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep. 2016;35(3):1757.PubMedCrossRef
36.
go back to reference Park YR, Kim SL, Lee MR, Seo SY, Lee JH, Kim SH, et al. MicroRNA-30a-5p (miR-30a) regulates cell motility and EMT by directly targeting oncogenic TM4SF1 in colorectal cancer. J Cancer Res Clin Oncol. 2017;143(11):1–13. Park YR, Kim SL, Lee MR, Seo SY, Lee JH, Kim SH, et al. MicroRNA-30a-5p (miR-30a) regulates cell motility and EMT by directly targeting oncogenic TM4SF1 in colorectal cancer. J Cancer Res Clin Oncol. 2017;143(11):1–13.
37.
go back to reference Ruan P, Tan A, Tao Z. Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci Rep. 2018;38(1):BSR20171027.PubMedPubMedCentralCrossRef Ruan P, Tan A, Tao Z. Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci Rep. 2018;38(1):BSR20171027.PubMedPubMedCentralCrossRef
38.
go back to reference Kim HJ, Lee S, Jung JU. When autophagy meets viruses: a double-edged sword with functions in defense and offense. Semin Immunopathol. 2010;32(4):323–41.PubMedPubMedCentralCrossRef Kim HJ, Lee S, Jung JU. When autophagy meets viruses: a double-edged sword with functions in defense and offense. Semin Immunopathol. 2010;32(4):323–41.PubMedPubMedCentralCrossRef
39.
go back to reference Jain B, Chaturvedi UC, Jain A. Role of intracellular events in the pathogenesis of dengue; an overview. Microb Pathog. 2014;69–70(1):45–52.PubMedCrossRef Jain B, Chaturvedi UC, Jain A. Role of intracellular events in the pathogenesis of dengue; an overview. Microb Pathog. 2014;69–70(1):45–52.PubMedCrossRef
40.
go back to reference Wileman T. Aggresomes and autophagy generate sites for virus replication. Science. 2006;312(5775):875–8.PubMedCrossRef Wileman T. Aggresomes and autophagy generate sites for virus replication. Science. 2006;312(5775):875–8.PubMedCrossRef
41.
go back to reference Wang X, Qi X, Yang B, Chen S, Wang J. Autophagy benefits the replication of egg drop syndrome virus in duck embryo fibroblasts. Front Microbiol. 2018;9. Wang X, Qi X, Yang B, Chen S, Wang J. Autophagy benefits the replication of egg drop syndrome virus in duck embryo fibroblasts. Front Microbiol. 2018;9.
42.
go back to reference Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, et al. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol. 2012;157(4):661–8.PubMedCrossRef Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, et al. Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol. 2012;157(4):661–8.PubMedCrossRef
43.
go back to reference Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, et al. Autophagy is involved in influenza a virus replication. Autophagy. 2009;5(3):321–8.PubMedCrossRef Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, et al. Autophagy is involved in influenza a virus replication. Autophagy. 2009;5(3):321–8.PubMedCrossRef
44.
go back to reference Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMedCrossRef Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMedCrossRef
45.
go back to reference Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5(6):816–23.PubMedPubMedCentralCrossRef Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5(6):816–23.PubMedPubMedCentralCrossRef
46.
go back to reference Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res. 2014;39(7):1279–91.PubMedCrossRef Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res. 2014;39(7):1279–91.PubMedCrossRef
47.
go back to reference Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One. 2013;8(1):e53950.PubMedPubMedCentralCrossRef Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, et al. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One. 2013;8(1):e53950.PubMedPubMedCentralCrossRef
48.
go back to reference Cao J, Ou X, Zhu D, Ma G, Cheng A, Wang M, et al. The 2A2 protein of duck hepatitis a virus type 1 induces apoptosis in primary cell culture. Virus Genes. 2016;52(6):1–9.CrossRef Cao J, Ou X, Zhu D, Ma G, Cheng A, Wang M, et al. The 2A2 protein of duck hepatitis a virus type 1 induces apoptosis in primary cell culture. Virus Genes. 2016;52(6):1–9.CrossRef
49.
go back to reference Sheng XD, Zhang WP, Zhang QR, Gu CQ, Hu XY, Cheng GF. Apoptosis induction in duck tissues during duck hepatitis a virus type 1 infection. Poult Sci. 2014;93(3):527–34.PubMedCrossRef Sheng XD, Zhang WP, Zhang QR, Gu CQ, Hu XY, Cheng GF. Apoptosis induction in duck tissues during duck hepatitis a virus type 1 infection. Poult Sci. 2014;93(3):527–34.PubMedCrossRef
50.
go back to reference Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Zhu D, et al. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget. 2018;9(55):30704–19.PubMedPubMedCentralCrossRef Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Zhu D, et al. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget. 2018;9(55):30704–19.PubMedPubMedCentralCrossRef
52.
go back to reference Guo Y, Shen C, Cheng A, Wang M, Na Z, Chen S, et al. Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures. Vet Microbiol. 2009;138(3):258–65.PubMedCrossRefPubMedCentral Guo Y, Shen C, Cheng A, Wang M, Na Z, Chen S, et al. Anatid herpesvirus 1 CH virulent strain induces syncytium and apoptosis in duck embryo fibroblast cultures. Vet Microbiol. 2009;138(3):258–65.PubMedCrossRefPubMedCentral
53.
go back to reference Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Jia R, et al. Duck plague virus promotes DEF cell apoptosis by activating Caspases, increasing intracellular ROS levels and inducing cell cycle S-phase arrest. Viruses. 2019;11(2):196.PubMedCentralCrossRef Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Jia R, et al. Duck plague virus promotes DEF cell apoptosis by activating Caspases, increasing intracellular ROS levels and inducing cell cycle S-phase arrest. Viruses. 2019;11(2):196.PubMedCentralCrossRef
Metadata
Title
Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy
Authors
Xianglong Wu
Renyong Jia
Mingshu Wang
Shun Chen
Mafeng Liu
Dekang Zhu
Xinxin Zhao
Qiao Yang
Ying Wu
Zhongqiong Yin
Shaqiu Zhang
Juan Huang
Ling Zhang
Yunya Liu
Yanling Yu
Leichang Pan
Bin Tian
Mujeeb Ur Rehman
Xiaoyue Chen
Anchun Cheng
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1250-5

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue