Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Coxsackievirus | Research

Construction and characterization of an infectious cDNA clone of coxsackievirus A 10

Authors: Qiliang Liu, Hanliang Dan, Xiaoping Zhao, Huoying Chen, Yongbei Chen, Ning Zhang, Zhijing Mo, Hongbo Liu

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Coxsackievirus A10 (CA10) constitutes one of the four major pathogens causing hand, foot and mouth disease in infants. Infectious clones are of great importance for studying viral gene functions and pathogenic mechanism. However, there is no report on the construction of CA10 infectious clones.

Methods

The whole genome of CA10 derived from a clinical isolate was amplified into two fragments and ligated into a linearized plasmid vector in one step by In-Fusion Cloning. The obtained CA10 cDNA clones and plasmids encoding T7 RNA polymerase were co-transfected into 293 T cells to rescue CA10 virus. The rescued virus was identified by SDS-PAGE, Western blotting and transmission electron microscopic. One-day-old ICR mice were intracerebrally inoculated with the CA10 virus and clinical symptoms were observed. Multiple tissues of moribund mice were harvested for analysis of pathogenic changes and viral distribution by using H&E staining, real-time PCR and immunohistochemical staining.

Results

CA10 viruses were rescued from the constructed cDNA clone and reached a maximum titer of 108.125TCID50/mL after one generation in RD cells. The virus exhibited similar physical and chemical properties to those of the parental virus. It also showed high virulence and the ability to induce death of neonatal ICR mice. Severe necrotizing myositis, intestinal villus interstitial edema and severe alveolar shrinkage were observed in infected mice. The viral antigen and the maximum amount of viral RNA were detected in limb skeletal muscles, which suggested that the limb skeletal muscles were the most likely site of viral replication.

Conclusion

Infectious clones of CA10 were successfully constructed for the first time, which will facilitate the establishment of standardized neonatal mouse models infected with CA10 for the evaluation of vaccines and antiviral drugs, as well as preservation and sharing of model strains.
Literature
1.
go back to reference Aswathyraj S, Arunkumar G, Alidjinou EK, Hober D. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol. 2016;205:397–407.CrossRef Aswathyraj S, Arunkumar G, Alidjinou EK, Hober D. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy. Med Microbiol Immunol. 2016;205:397–407.CrossRef
2.
go back to reference Li W, Gao HH, Zhang Q, Liu YJ, Tao R, Cheng YP, Shu Q, Shang SQ. Large outbreak of herpangina in children caused by enterovirus in summer of 2015 in Hangzhou, China. Sci Rep. 2016;6:35388.CrossRef Li W, Gao HH, Zhang Q, Liu YJ, Tao R, Cheng YP, Shu Q, Shang SQ. Large outbreak of herpangina in children caused by enterovirus in summer of 2015 in Hangzhou, China. Sci Rep. 2016;6:35388.CrossRef
3.
go back to reference He YQ, Chen L, Xu WB, Yang H, Wang HZ, Zong WP, Xian HX, Chen HL, Yao XJ, Hu ZL, et al. Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus a6- and coxsackievirus a10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Clin Microbiol. 2013;51:3560–6.CrossRef He YQ, Chen L, Xu WB, Yang H, Wang HZ, Zong WP, Xian HX, Chen HL, Yao XJ, Hu ZL, et al. Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus a6- and coxsackievirus a10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Clin Microbiol. 2013;51:3560–6.CrossRef
4.
go back to reference Blomqvist S, Klemola P, Kaijalainen S, Paananen A, Simonen ML, Vuorinen T, Roivainen M. Co-circulation of coxsackieviruses A6 and A10 in hand, foot and mouth disease outbreak in Finland. J Clin Virol. 2010;48:49–54.CrossRef Blomqvist S, Klemola P, Kaijalainen S, Paananen A, Simonen ML, Vuorinen T, Roivainen M. Co-circulation of coxsackieviruses A6 and A10 in hand, foot and mouth disease outbreak in Finland. J Clin Virol. 2010;48:49–54.CrossRef
5.
go back to reference Mirand A, Henquell C, Archimbaud C, Ughetto S, Antona D, Bailly JL, Peigue-Lafeuille H. Outbreak of hand, foot and mouth disease/herpangina associated with coxsackievirus A6 and A10 infections in 2010, France: a large citywide, prospective observational study. Clin Microbiol Infect. 2012;18:E110–8.CrossRef Mirand A, Henquell C, Archimbaud C, Ughetto S, Antona D, Bailly JL, Peigue-Lafeuille H. Outbreak of hand, foot and mouth disease/herpangina associated with coxsackievirus A6 and A10 infections in 2010, France: a large citywide, prospective observational study. Clin Microbiol Infect. 2012;18:E110–8.CrossRef
6.
go back to reference Upala P, Apidechkul T, Suttana W, Kullawong N, Tamornpark R, Inta C. Molecular epidemiology and clinical features of hand, foot and mouth disease in northern Thailand in 2016: a prospective cohort study. BMC Infect Dis. 2018;18:630.CrossRef Upala P, Apidechkul T, Suttana W, Kullawong N, Tamornpark R, Inta C. Molecular epidemiology and clinical features of hand, foot and mouth disease in northern Thailand in 2016: a prospective cohort study. BMC Infect Dis. 2018;18:630.CrossRef
7.
go back to reference Hoang MTV, Nguyen TA, Tran TT, Vu TTH, Le NTN, Nguyen THN, Le THN, Nguyen TTH, Nguyen TH, Le NTN, et al. Clinical and aetiological study of hand, foot and mouth disease in southern Vietnam, 2013-2015: inpatients and outpatients. Int J Infect Dis. 2019;80:1–9.CrossRef Hoang MTV, Nguyen TA, Tran TT, Vu TTH, Le NTN, Nguyen THN, Le THN, Nguyen TTH, Nguyen TH, Le NTN, et al. Clinical and aetiological study of hand, foot and mouth disease in southern Vietnam, 2013-2015: inpatients and outpatients. Int J Infect Dis. 2019;80:1–9.CrossRef
8.
go back to reference Munivenkatappa A, Yadav PD, Nyayanit DA, Majumdar TD, Sangal L, Jain S, Sinha DP, Shrivastava A, Mourya DT. Molecular diversity of Coxsackievirus A10 circulating in the southern and northern region of India [2009-17]. Infect Genet Evol. 2018;66:101–10.CrossRef Munivenkatappa A, Yadav PD, Nyayanit DA, Majumdar TD, Sangal L, Jain S, Sinha DP, Shrivastava A, Mourya DT. Molecular diversity of Coxsackievirus A10 circulating in the southern and northern region of India [2009-17]. Infect Genet Evol. 2018;66:101–10.CrossRef
9.
go back to reference Bracho MA, Gonzalez-Candelas F, Valero A, Cordoba J, Salazar A. Enterovirus co-infections and onychomadesis after hand, foot, and mouth disease, Spain, 2008. Emerg Infect Dis. 2011;17:2223–31.CrossRef Bracho MA, Gonzalez-Candelas F, Valero A, Cordoba J, Salazar A. Enterovirus co-infections and onychomadesis after hand, foot, and mouth disease, Spain, 2008. Emerg Infect Dis. 2011;17:2223–31.CrossRef
10.
go back to reference Okada H, Wada M, Sato H, Yamaguchi Y, Tanji H, Kurokawa K, Kawanami T, Takahashi T, Kato T. Neuromyelitis optica preceded by hyperCKemia and a possible association with coxsackie virus group A10 infection. Intern Med. 2013;52:2665–8.CrossRef Okada H, Wada M, Sato H, Yamaguchi Y, Tanji H, Kurokawa K, Kawanami T, Takahashi T, Kato T. Neuromyelitis optica preceded by hyperCKemia and a possible association with coxsackie virus group A10 infection. Intern Med. 2013;52:2665–8.CrossRef
11.
go back to reference Fuschino ME, Lamson DM, Rush K, Carbone LS, Taff ML, Hua Z, Landi K, George KS. Detection of coxsackievirus A10 in multiple tissues of a fatal infant sepsis case. J Clin Virol. 2012;53:259–61.CrossRef Fuschino ME, Lamson DM, Rush K, Carbone LS, Taff ML, Hua Z, Landi K, George KS. Detection of coxsackievirus A10 in multiple tissues of a fatal infant sepsis case. J Clin Virol. 2012;53:259–61.CrossRef
12.
go back to reference Yamashita T, Ito M, Taniguchi A, Sakae K. Prevalence of coxsackievirus A5, A6, and A10 in patients with herpangina in Aichi Prefecture, 2005. Jpn J Infect Dis. 2005;58:390–1.PubMed Yamashita T, Ito M, Taniguchi A, Sakae K. Prevalence of coxsackievirus A5, A6, and A10 in patients with herpangina in Aichi Prefecture, 2005. Jpn J Infect Dis. 2005;58:390–1.PubMed
13.
go back to reference =Guan H, Wang J, Wang C, Yang M, Liu L, Yang G, Ma X. Etiology of multiple non-EV71 and non-CVA16 enteroviruses associated with hand, foot and mouth disease in Jinan, China, 2009-June 2013. PLoS One. 2015;10:e0142733.CrossRef =Guan H, Wang J, Wang C, Yang M, Liu L, Yang G, Ma X. Etiology of multiple non-EV71 and non-CVA16 enteroviruses associated with hand, foot and mouth disease in Jinan, China, 2009-June 2013. PLoS One. 2015;10:e0142733.CrossRef
14.
go back to reference Zhang YX, Wei T, Li XY, Yin X, Li YH, Ding JW, Zhou JM, Zhang GZ, Jin Q, Cen S. Construction and characterization of an infectious cDNA clone of enterovirus type 71 subgenotype C4. Virus Genes. 2013;47:235–43.CrossRef Zhang YX, Wei T, Li XY, Yin X, Li YH, Ding JW, Zhou JM, Zhang GZ, Jin Q, Cen S. Construction and characterization of an infectious cDNA clone of enterovirus type 71 subgenotype C4. Virus Genes. 2013;47:235–43.CrossRef
15.
go back to reference Liu F, Liu Q, Cai Y, Leng Q, Huang Z. Construction and characterization of an infectious clone of coxsackievirus A16. Virol J. 2011;8:534.CrossRef Liu F, Liu Q, Cai Y, Leng Q, Huang Z. Construction and characterization of an infectious clone of coxsackievirus A16. Virol J. 2011;8:534.CrossRef
16.
go back to reference Yang L, Li S, Liu Y, Hou W, Lin Q, Zhao H, Xu L, He D, Ye X, Zhu H, et al. Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice. Virus Res. 2015;210:165–8.CrossRef Yang L, Li S, Liu Y, Hou W, Lin Q, Zhao H, Xu L, He D, Ye X, Zhu H, et al. Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice. Virus Res. 2015;210:165–8.CrossRef
17.
go back to reference Kandolf R, Hofschneider PH. Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci U S A. 1985;82:4818–22.CrossRef Kandolf R, Hofschneider PH. Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci U S A. 1985;82:4818–22.CrossRef
18.
go back to reference Paananen A, Savolainen-Kopra C, Kaijalainen S, Vaarala O, Hovi T, Roivainen M. Genetic and phenotypic diversity of echovirus 30 strains and pathogenesis of type 1 diabetes. J Med Virol. 2007;79:945–55.CrossRef Paananen A, Savolainen-Kopra C, Kaijalainen S, Vaarala O, Hovi T, Roivainen M. Genetic and phenotypic diversity of echovirus 30 strains and pathogenesis of type 1 diabetes. J Med Virol. 2007;79:945–55.CrossRef
19.
go back to reference Hou W, Yang L, Li S, Yu H, Xu L, He D, Chen M, He S, Ye X, Que Y, et al. Construction and characterization of an infectious cDNA clone of echovirus 25. Virus Res. 2015;205:41–4.CrossRef Hou W, Yang L, Li S, Yu H, Xu L, He D, Chen M, He S, Ye X, Que Y, et al. Construction and characterization of an infectious cDNA clone of echovirus 25. Virus Res. 2015;205:41–4.CrossRef
20.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1983;27:493–7. Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1983;27:493–7.
21.
go back to reference Chong P, Guo MS, Lin FH, Hsiao KN, Weng SY, Chou AH, Wang JR, Hsieh SY, Su IJ, Liu CC. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS One. 2012;7:e49973.CrossRef Chong P, Guo MS, Lin FH, Hsiao KN, Weng SY, Chou AH, Wang JR, Hsieh SY, Su IJ, Liu CC. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS One. 2012;7:e49973.CrossRef
22.
go back to reference Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, Wang C, Mao P, Liang Z, Wang J. A neonatal mouse model of coxsackievirus A16 for vaccine evaluation. J Virol. 2012;86:11967–76.CrossRef Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, Wang C, Mao P, Liang Z, Wang J. A neonatal mouse model of coxsackievirus A16 for vaccine evaluation. J Virol. 2012;86:11967–76.CrossRef
23.
go back to reference Lazouskaya NV, Palombo EA, Poh CL, Barton PA. Construction of an infectious cDNA clone of Enterovirus 71: insights into the factors ensuring experimental success. J Virol Methods. 2014;197:67–76.CrossRef Lazouskaya NV, Palombo EA, Poh CL, Barton PA. Construction of an infectious cDNA clone of Enterovirus 71: insights into the factors ensuring experimental success. J Virol Methods. 2014;197:67–76.CrossRef
24.
go back to reference Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol. 2005;86:1391–401.CrossRef Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol. 2005;86:1391–401.CrossRef
25.
go back to reference Li J, Chang J, Liu X, Yang J, Guo H, Wei W, Zhang W, Yu XF. Protection from lethal challenge in a neonatal mouse model by circulating recombinant form coxsackievirus A16 vaccine candidates. J Gen Virol. 2014;95:1083–93.CrossRef Li J, Chang J, Liu X, Yang J, Guo H, Wei W, Zhang W, Yu XF. Protection from lethal challenge in a neonatal mouse model by circulating recombinant form coxsackievirus A16 vaccine candidates. J Gen Virol. 2014;95:1083–93.CrossRef
26.
go back to reference Chang J, Li J, Liu X, Liu G, Yang J, Wei W, Zhang W, Yu XF. Broad protection with an inactivated vaccine against primary-isolated lethal enterovirus 71 infection in newborn mice. BMC Microbiol. 2015;15:139.CrossRef Chang J, Li J, Liu X, Liu G, Yang J, Wei W, Zhang W, Yu XF. Broad protection with an inactivated vaccine against primary-isolated lethal enterovirus 71 infection in newborn mice. BMC Microbiol. 2015;15:139.CrossRef
27.
go back to reference Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol. 2004;85:69–77.CrossRef Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol. 2004;85:69–77.CrossRef
28.
go back to reference Li S, Zhao H, Yang L, Hou W, Xu L, Wu Y, Wang W, Chen C, Wan J, Ye X, et al. A neonatal mouse model of coxsackievirus A10 infection for anti-viral evaluation. Antivir Res. 2017;144:247–55.CrossRef Li S, Zhao H, Yang L, Hou W, Xu L, Wu Y, Wang W, Chen C, Wan J, Ye X, et al. A neonatal mouse model of coxsackievirus A10 infection for anti-viral evaluation. Antivir Res. 2017;144:247–55.CrossRef
Metadata
Title
Construction and characterization of an infectious cDNA clone of coxsackievirus A 10
Authors
Qiliang Liu
Hanliang Dan
Xiaoping Zhao
Huoying Chen
Yongbei Chen
Ning Zhang
Zhijing Mo
Hongbo Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1201-1

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue