Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Research

Involvement of PRRSV NSP3 and NSP5 in the autophagy process

Authors: Wei Zhang, Keren Chen, Yang Guo, Yaosheng Chen, Xiaohong Liu

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Autophagy is an essential process in eukaryotic cells in which autophagosomes form to deliver cellular organelles and long-lived proteins to lysosomes for degradation. Many studies have recently identified the regulatory mechanisms involved in the interaction between viral infection and autophagy.

Methods

LC3 turnover and the proteins in the endoplasmic reticulum (ER) stress pathway were investigated using western blot analysis. The formation and degradation of autophagosomes were detected using immunofluorescence staining.

Results

Autophagy was activated by porcine reproductive and respiratory syndrome virus (PRRSV) NSP3, NSP5 and NSP9, which are two transmembrane proteins and an RNA-dependent RNA polymerase, respectively. The formation of autophagosomes was induced by NSP3 and NSP5 and developed from the ER; the fusion of these autophagosomes with lysosomes was limited. Although NSP3 and NSP5 are ER transmembrane proteins, these proteins did not activate the ER stress signaling pathways. In addition, the cytoplasmic domain of NSP3 plays a pivotal role in activating autophagy.

Conclusions

The data presented in this study reveal an important relationship between PRRSV NSPs and autophagy and provide new insights that improve our understanding of the involvement of PRRSV NSPs in the autophagy process.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998;35:1–20.CrossRef Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998;35:1–20.CrossRef
3.
go back to reference Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Javma J Am Vet Med Assoc. 2005;227:385–92.CrossRef Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Javma J Am Vet Med Assoc. 2005;227:385–92.CrossRef
4.
go back to reference Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: origin of phenotype and genotype diversity. Virology. 2015;479:475–86.CrossRef Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: origin of phenotype and genotype diversity. Virology. 2015;479:475–86.CrossRef
5.
go back to reference Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997;142:629–33.PubMed Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol. 1997;142:629–33.PubMed
6.
7.
go back to reference Yun SI, Lee YM. Overview: replication of porcine reproductive and respiratory syndrome virus. J Microbiol. 2013;51:711–23.CrossRef Yun SI, Lee YM. Overview: replication of porcine reproductive and respiratory syndrome virus. J Microbiol. 2013;51:711–23.CrossRef
8.
go back to reference Klionsky DJ, Emr SD. Cell biology - autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.CrossRef Klionsky DJ, Emr SD. Cell biology - autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.CrossRef
9.
go back to reference Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.CrossRef Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.CrossRef
10.
go back to reference Xie ZP, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.CrossRef Xie ZP, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.CrossRef
11.
go back to reference Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73–80.CrossRef Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73–80.CrossRef
12.
go back to reference Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282:37298–302.CrossRef Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282:37298–302.CrossRef
13.
go back to reference Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the similar to 350-kDa Apg12-Apg5 center dot Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277:18619–25.CrossRef Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the similar to 350-kDa Apg12-Apg5 center dot Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem. 2002;277:18619–25.CrossRef
14.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.CrossRef Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8:445–544.CrossRef
15.
go back to reference He CC, Klionsky DJ: Regulation Mechanisms and Signaling Pathways of Autophagy. In Annual Review of Genetics. Volume 43; 2009: 67–93: Annual Review of Genetics]. He CC, Klionsky DJ: Regulation Mechanisms and Signaling Pathways of Autophagy. In Annual Review of Genetics. Volume 43; 2009: 67–93: Annual Review of Genetics].
16.
go back to reference Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svard SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoan Giardia lamblia. Traffic. 2017;18:604–21.CrossRef Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svard SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoan Giardia lamblia. Traffic. 2017;18:604–21.CrossRef
17.
go back to reference Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.CrossRef Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.CrossRef
18.
go back to reference Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.CrossRef Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.CrossRef
19.
go back to reference Xu CY, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–64.CrossRef Xu CY, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–64.CrossRef
20.
go back to reference Lin JH, Walter P, Yen TSB: Endoplasmic reticulum stress in disease pathogenesis. In Annual Review of Pathology-Mechanisms of Disease. Volume 3; 2008: 399–425: Annual Review of Pathology-Mechanisms of Disease]. Lin JH, Walter P, Yen TSB: Endoplasmic reticulum stress in disease pathogenesis. In Annual Review of Pathology-Mechanisms of Disease. Volume 3; 2008: 399–425: Annual Review of Pathology-Mechanisms of Disease].
22.
go back to reference Huo Y, Fan L, Yin S, Dong Y, Guo X, Yang H, Hu H. Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology. 2013;444:233–40.CrossRef Huo Y, Fan L, Yin S, Dong Y, Guo X, Yang H, Hu H. Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology. 2013;444:233–40.CrossRef
23.
go back to reference Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, Britton P, Ktistakis NT, Wileman T. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011;7:1335–47.CrossRef Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, Britton P, Ktistakis NT, Wileman T. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011;7:1335–47.CrossRef
24.
go back to reference Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014;10:1426–41.CrossRef Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014;10:1426–41.CrossRef
25.
go back to reference Guevin C, Manna D, Belanger C, Konan KV, Mak P, Labonte P. Autophagy protein ATG5 interacts transiently with the hepatitis polymerase (NS5B) early during infection. Virology. 2010;405:1–7.CrossRef Guevin C, Manna D, Belanger C, Konan KV, Mak P, Labonte P. Autophagy protein ATG5 interacts transiently with the hepatitis polymerase (NS5B) early during infection. Virology. 2010;405:1–7.CrossRef
26.
go back to reference Zhang HT, Chen GG, Hu BG, Zhang ZY, Yun JP, He ML, Lai PBS. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase. J Viral Hepat. 2014;21:642–9.CrossRef Zhang HT, Chen GG, Hu BG, Zhang ZY, Yun JP, He ML, Lai PBS. Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase. J Viral Hepat. 2014;21:642–9.CrossRef
27.
go back to reference Liu B, Fang MD, Hu Y, Huang BS, Li N, Chang CM, Huang R, Xu X, Yang ZG, Chen Z, Liu W. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy. 2014;10:416–30.CrossRef Liu B, Fang MD, Hu Y, Huang BS, Li N, Chang CM, Huang R, Xu X, Yang ZG, Chen Z, Liu W. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy. 2014;10:416–30.CrossRef
28.
go back to reference Sun MX, Huang L, Wang R, Yu YL, Li C, Li PP, Hu XC, Hao HP, Ishag HA, Mao X. Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy. 2012;8:1434–47.CrossRef Sun MX, Huang L, Wang R, Yu YL, Li C, Li PP, Hu XC, Hao HP, Ishag HA, Mao X. Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy. 2012;8:1434–47.CrossRef
29.
go back to reference Chen QG, Fang LR, Wang D, Wang SH, Li P, Li M, Luo R, Chen HC, Xiao SB. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res. 2012;163:650–5.CrossRef Chen QG, Fang LR, Wang D, Wang SH, Li P, Li M, Luo R, Chen HC, Xiao SB. Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res. 2012;163:650–5.CrossRef
30.
go back to reference Liu QH, Qin YX, Zhou L, Kou QW, Guo X, Ge XN, Yang HC. Hu HB: autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology. 2012;429:136–47.CrossRef Liu QH, Qin YX, Zhou L, Kou QW, Guo X, Ge XN, Yang HC. Hu HB: autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology. 2012;429:136–47.CrossRef
31.
go back to reference Li SF, Wang JX, Zhou A, Khan FA, Hu L, Zhang SJ. Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis. Oncotarget. 2016;7:56002–12.PubMedPubMedCentral Li SF, Wang JX, Zhou A, Khan FA, Hu L, Zhang SJ. Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis. Oncotarget. 2016;7:56002–12.PubMedPubMedCentral
32.
go back to reference Li SF, Zhou A, Wang JX, Zhang SJ. Interplay of autophagy and apoptosis during PRRSV infection of Marc145 cell. Infection Genetics and Evolution. 2016;39:51–4.CrossRef Li SF, Zhou A, Wang JX, Zhang SJ. Interplay of autophagy and apoptosis during PRRSV infection of Marc145 cell. Infection Genetics and Evolution. 2016;39:51–4.CrossRef
33.
go back to reference Zhou A, Li SF, Khan FA, Zhang SJ. Autophagy postpones apoptotic cell death in PRRSV infection through bad-Beclin1 interaction. Virulence. 2016;7:98–109.CrossRef Zhou A, Li SF, Khan FA, Zhang SJ. Autophagy postpones apoptotic cell death in PRRSV infection through bad-Beclin1 interaction. Virulence. 2016;7:98–109.CrossRef
34.
go back to reference Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 1999;18:3888–96.CrossRef Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 1999;18:3888–96.CrossRef
35.
go back to reference Mizushima N, Yoshimori T, Ohsumi Y: The Role of Atg Proteins in Autophagosome Formation. In Annual Review of Cell and Developmental Biology, Vol 27. Volume 27. Edited by Schekman R, Goldstein L, Lehmann R; 2011: 107–132: Annual Review of Cell and Developmental Biology]. Mizushima N, Yoshimori T, Ohsumi Y: The Role of Atg Proteins in Autophagosome Formation. In Annual Review of Cell and Developmental Biology, Vol 27. Volume 27. Edited by Schekman R, Goldstein L, Lehmann R; 2011: 107–132: Annual Review of Cell and Developmental Biology].
36.
go back to reference Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–67.CrossRef Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141:656–67.CrossRef
37.
go back to reference Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.CrossRef Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.CrossRef
38.
go back to reference Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.CrossRef Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.CrossRef
39.
go back to reference Songane M, Kleinnijenhuis J, Netea MG, van Crevel R. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis. 2012;92:388–96.CrossRef Songane M, Kleinnijenhuis J, Netea MG, van Crevel R. The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis. 2012;92:388–96.CrossRef
41.
go back to reference Richards AL, Jackson WT. How positive-Strand RNA viruses benefit from autophagosome maturation. J Virol. 2013;87:9966–72.CrossRef Richards AL, Jackson WT. How positive-Strand RNA viruses benefit from autophagosome maturation. J Virol. 2013;87:9966–72.CrossRef
42.
go back to reference Gordy C, He Y-W. The crosstalk between autophagy and apoptosis: where does this lead? Protein & Cell. 2012;3:17–27.CrossRef Gordy C, He Y-W. The crosstalk between autophagy and apoptosis: where does this lead? Protein & Cell. 2012;3:17–27.CrossRef
43.
go back to reference Wang L, Ou JH. Hepatitis C virus and autophagy. Biol Chem. 2015;396:1215–22.CrossRef Wang L, Ou JH. Hepatitis C virus and autophagy. Biol Chem. 2015;396:1215–22.CrossRef
44.
go back to reference Wang X, Hou L, Du J, Zhou L, Ge X, Guo X, Yang H. Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Vet Microbiol. 2015;178:217–29.CrossRef Wang X, Hou L, Du J, Zhou L, Ge X, Guo X, Yang H. Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Vet Microbiol. 2015;178:217–29.CrossRef
45.
go back to reference Wu H, Zhai X, Chen Y, Wang R, Lin L, Chen S, Wang T, Zhong X, Wu X, Wang Y, et al. Protein 2B of Coxsackievirus B3 induces autophagy relying on its transmembrane hydrophobic sequences. Viruses. 2016;8. Wu H, Zhai X, Chen Y, Wang R, Lin L, Chen S, Wang T, Zhong X, Wu X, Wang Y, et al. Protein 2B of Coxsackievirus B3 induces autophagy relying on its transmembrane hydrophobic sequences. Viruses. 2016;8.
Metadata
Title
Involvement of PRRSV NSP3 and NSP5 in the autophagy process
Authors
Wei Zhang
Keren Chen
Yang Guo
Yaosheng Chen
Xiaohong Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1116-x

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue