Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Short report

Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains

Authors: Chao Ye, Jiqiang Wu, Wu Tong, Tongling Shan, Xuefei Cheng, Jingjing Xu, Chao Liang, Hao Zheng, Guoxin Li, Guangzhi Tong

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Pseudorabies virus (PRV) of the family Herpesviridae is the causative agent of Aujeszky’s disease. Attenuation of PRV by serial passaging in vitro is a well-established method; however, the dynamic variations occurring on viral genome during this process have not been characterized.

Methods

Genome sequencing and comparative genomic analyses of a virulent pseudorabies virus and a series of its plaque-purified strains via serial passaging in vitro were performed, and the properties in vitro and in vivo of which were further characterized.

Results

Compared to the parental virus, replication in vitro was enhanced in the highly passaged F50, F91, and F120. In contrast, lethality in mice decreased gradually with passage number. Genome sequencing of F50, F91, and F120 showed deletion of a large fragment containing gE, which is likely related to their attenuation. In addition, single nucleotide variations were identified in many genes of F50, F91, and F120. In-frame and frameshift indels were also detected in specific genes of passaged strains. Particularly frameshift mutations were observed in highly passaged strains, resulting in a truncated but overexpressed pUL46.

Conclusion

During attenuation of PRV by serial passaging in Vero cells, dynamic variation patterns including a large deletion, single nucleotide variations, small in-frame indels, and also frameshifts mutations successively emerged, contributing to evolution of the viral population and enabling the gradual attenuation of the virus. These data provide clues to better understand PRV attenuation during passaging.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pellett PE, Davison AJ, Eberle R, Ehlers B, Hayward GS, Lacoste V, et al. Herpesvirales. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. London: Elsevier academic press; 2011. p. 99–107. Pellett PE, Davison AJ, Eberle R, Ehlers B, Hayward GS, Lacoste V, et al. Herpesvirales. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. London: Elsevier academic press; 2011. p. 99–107.
2.
go back to reference Pejsak ZK, Truszczyni MJ. Truszczynsk: Aujeszky’s disease (pseudorabies). In: Straw BE, Zimmerman JJ, D’Allaire S, Taylor DJ, editors. Diseases of swine. 9th ed. Ames: Blackwell publishing ltd; 2006. p. 419–33. Pejsak ZK, Truszczyni MJ. Truszczynsk: Aujeszky’s disease (pseudorabies). In: Straw BE, Zimmerman JJ, D’Allaire S, Taylor DJ, editors. Diseases of swine. 9th ed. Ames: Blackwell publishing ltd; 2006. p. 419–33.
3.
go back to reference Freuling CM, Müller TF, Mettenleiter TC. Vaccines against pseudorabies virus (PrV). Vet Microbiol. 2017;206:3–9.CrossRef Freuling CM, Müller TF, Mettenleiter TC. Vaccines against pseudorabies virus (PrV). Vet Microbiol. 2017;206:3–9.CrossRef
4.
go back to reference Mettenleiter TC. Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol. 1996;54:221–9.CrossRef Mettenleiter TC. Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol. 1996;54:221–9.CrossRef
5.
go back to reference Robbins AK, Ryan JP, Whealy ME, Enquist LW. The gene encoding the gIII envelope protein of pseudorabies virus vaccine strain Bartha contains a mutation affecting protein localization. J Virol. 1989;63:250–8.PubMedPubMedCentral Robbins AK, Ryan JP, Whealy ME, Enquist LW. The gene encoding the gIII envelope protein of pseudorabies virus vaccine strain Bartha contains a mutation affecting protein localization. J Virol. 1989;63:250–8.PubMedPubMedCentral
6.
go back to reference Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Mettenleiter TC, et al. Pseudorabies virus in wild swine: a global perspective. Arch Virol. 2011;156:1691.CrossRef Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Mettenleiter TC, et al. Pseudorabies virus in wild swine: a global perspective. Arch Virol. 2011;156:1691.CrossRef
7.
go back to reference Ye C, Zhang QZ, Tian ZJ, Zheng H, Zhao K, Liu F, et al. Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: evidence for the existence of two major genotypes. Virology. 2015;483:32–43.CrossRef Ye C, Zhang QZ, Tian ZJ, Zheng H, Zhao K, Liu F, et al. Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: evidence for the existence of two major genotypes. Virology. 2015;483:32–43.CrossRef
8.
go back to reference An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg Infect Dis. 2013;19:1749–55.CrossRef An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg Infect Dis. 2013;19:1749–55.CrossRef
9.
go back to reference Luo Y, Li N, Cong X, Wang CH, Du M, Li L, et al. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet Microbiol. 2014;174:107–15.CrossRef Luo Y, Li N, Cong X, Wang CH, Du M, Li L, et al. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet Microbiol. 2014;174:107–15.CrossRef
10.
go back to reference Lomniczi B, Blankenship ML, Ben-Porat T. Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes. J Virol. 1984;49:970–9.PubMedPubMedCentral Lomniczi B, Blankenship ML, Ben-Porat T. Deletions in the genomes of pseudorabies virus vaccine strains and existence of four isomers of the genomes. J Virol. 1984;49:970–9.PubMedPubMedCentral
11.
go back to reference Mettenleiter TC, Lukacs N, Rziha HJ. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J Virol. 1985;56:307–11.PubMedPubMedCentral Mettenleiter TC, Lukacs N, Rziha HJ. Pseudorabies virus avirulent strains fail to express a major glycoprotein. J Virol. 1985;56:307–11.PubMedPubMedCentral
12.
go back to reference Petrovskis EA, Timmins JG, Gierman TM, Post LE. Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63. J Virol. 1986;60:1166–9.PubMedPubMedCentral Petrovskis EA, Timmins JG, Gierman TM, Post LE. Deletions in vaccine strains of pseudorabies virus and their effect on synthesis of glycoprotein gp63. J Virol. 1986;60:1166–9.PubMedPubMedCentral
13.
go back to reference Lomniczi B, Watanabe S, Ben-Porat T, Kaplan AS. Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. J Virol. 1987;61:796–801.PubMedPubMedCentral Lomniczi B, Watanabe S, Ben-Porat T, Kaplan AS. Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. J Virol. 1987;61:796–801.PubMedPubMedCentral
14.
go back to reference Klupp BG, Lomniczi B, Visser N, Fuchs W, Mettenleiter TC. Mutations affecting the UL21 gene contribute to avirulence of pseudorabies virus vaccine strain Bartha. Virology. 1995;212:466–73.CrossRef Klupp BG, Lomniczi B, Visser N, Fuchs W, Mettenleiter TC. Mutations affecting the UL21 gene contribute to avirulence of pseudorabies virus vaccine strain Bartha. Virology. 1995;212:466–73.CrossRef
15.
go back to reference Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, et al. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 2011;7:e1002282.CrossRef Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, et al. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 2011;7:e1002282.CrossRef
16.
go back to reference Liang C, Tong W, Zheng H, Liu F, Wu J, Li G, et al. A high-temperature passaging attenuated pseudorabies vaccine protects piglets completely against emerging PRV variant. Res Vet Sci. 2017;112:109–15.CrossRef Liang C, Tong W, Zheng H, Liu F, Wu J, Li G, et al. A high-temperature passaging attenuated pseudorabies vaccine protects piglets completely against emerging PRV variant. Res Vet Sci. 2017;112:109–15.CrossRef
17.
go back to reference Klopfleisch R, Teifke JP, Fuchs W, Kopp M, Klupp BG, Mettenleiter TC. Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol. 2004;78:2956–66.CrossRef Klopfleisch R, Teifke JP, Fuchs W, Kopp M, Klupp BG, Mettenleiter TC. Influence of tegument proteins of pseudorabies virus on neuroinvasion and transneuronal spread in the nervous system of adult mice after intranasal inoculation. J Virol. 2004;78:2956–66.CrossRef
18.
go back to reference Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRef Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRef
19.
go back to reference Colgrove RC, Liu X, Griffiths A, Raja P, Deluca NA, Newman RM, et al. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology. 2016;487:215–21.CrossRef Colgrove RC, Liu X, Griffiths A, Raja P, Deluca NA, Newman RM, et al. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology. 2016;487:215–21.CrossRef
20.
go back to reference Wilkinson GWG, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, et al. Human cytomegalovirus: taking the strain. Med Microbiol Immunol. 2015;204:273–84.CrossRef Wilkinson GWG, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, et al. Human cytomegalovirus: taking the strain. Med Microbiol Immunol. 2015;204:273–84.CrossRef
21.
go back to reference Tong W, Li GX, Liang C, Liu F, Tian Q, Cao YY, et al. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antivir Res. 2016;130:110–7.CrossRef Tong W, Li GX, Liang C, Liu F, Tian Q, Cao YY, et al. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antivir Res. 2016;130:110–7.CrossRef
22.
go back to reference Wang CH, Yuan J, Qin HY, Luo Y, Cong X, Li Y, et al. A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China. Vaccine. 2014;32:3379–85.CrossRef Wang CH, Yuan J, Qin HY, Luo Y, Cong X, Li Y, et al. A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China. Vaccine. 2014;32:3379–85.CrossRef
23.
go back to reference Renner DW, Szpara ML. The impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J Virol. 2017;92:e00908–17.PubMedPubMedCentral Renner DW, Szpara ML. The impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J Virol. 2017;92:e00908–17.PubMedPubMedCentral
24.
go back to reference Grimm KS, Klupp BG, Granzow H, Müller FM, Fuchs W, Mettenleiter TC. Analysis of viral and cellular factors influencing herpesvirus-induced nuclear envelope breakdown. J Virol. 2012;86:6512–21.CrossRef Grimm KS, Klupp BG, Granzow H, Müller FM, Fuchs W, Mettenleiter TC. Analysis of viral and cellular factors influencing herpesvirus-induced nuclear envelope breakdown. J Virol. 2012;86:6512–21.CrossRef
25.
go back to reference Sasadeusz JJ, Tufaro F, Safrin S, Schubert K, Hubinette MM, Cheung PK, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol. 1997;71:3872–8.PubMedPubMedCentral Sasadeusz JJ, Tufaro F, Safrin S, Schubert K, Hubinette MM, Cheung PK, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol. 1997;71:3872–8.PubMedPubMedCentral
26.
go back to reference Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, et al. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol. 2009;90:2375–80.CrossRef Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, et al. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol. 2009;90:2375–80.CrossRef
Metadata
Title
Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains
Authors
Chao Ye
Jiqiang Wu
Wu Tong
Tongling Shan
Xuefei Cheng
Jingjing Xu
Chao Liang
Hao Zheng
Guoxin Li
Guangzhi Tong
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1102-8

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue