Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Review

The so far farthest reaches of the double jelly roll capsid protein fold

Authors: Carmen San Martín, Mark J. van Raaij

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

During the last two decades, structural biology analyses have shown that viruses infecting hosts far apart in evolution share similar architectural features, prompting a new virus classification based on structural lineages. Until recently, only a few prokaryotic viruses had been described for one of the lineages, whose main characteristic is a capsid protein with a perpendicular double jelly roll.

Main body

Metagenomics analyses are showing that the variety of prokaryotic viruses encoding double jelly roll capsid proteins is much larger than previously thought. The newly discovered viruses have novel genome organisations with interesting implications for virus structure, function and evolution. There are also indications of their having a significant ecological impact.

Conclusion

Viruses with double jelly roll capsid proteins that infect prokaryotic hosts form a large part of the virosphere that had so far gone unnoticed. Their discovery by metagenomics is only a first step towards many more exciting findings. Work needs to be invested in isolating these viruses and their hosts, characterizing the structure and function of the proteins their genomes encode, and eventually access the wealth of biological information they may hold.
Literature
1.
go back to reference Chapman MS, Liljas L. Structural folds of viral proteins. Adv Prot Chem. 2003;64:125–96.CrossRef Chapman MS, Liljas L. Structural folds of viral proteins. Adv Prot Chem. 2003;64:125–96.CrossRef
2.
go back to reference Roberts MM, White JL, Grutter MG, Burnett RM. 3-dimensional structure of the adenovirus major coat protein hexon. Science. 1986;232:1148–51.CrossRef Roberts MM, White JL, Grutter MG, Burnett RM. 3-dimensional structure of the adenovirus major coat protein hexon. Science. 1986;232:1148–51.CrossRef
3.
go back to reference San Martín C. Latest insights on adenovirus structure and assembly. Viruses. 2012;4:847–77.CrossRef San Martín C. Latest insights on adenovirus structure and assembly. Viruses. 2012;4:847–77.CrossRef
4.
go back to reference Benson SD, Bamford JKH, Bamford DH, Burnett RM. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell. 1999;98:825–33.CrossRef Benson SD, Bamford JKH, Bamford DH, Burnett RM. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell. 1999;98:825–33.CrossRef
5.
go back to reference Hendrix RW. Evolution: the long evolutionary reach of viruses. Curr Biol. 1999;9:R914–7.CrossRef Hendrix RW. Evolution: the long evolutionary reach of viruses. Curr Biol. 1999;9:R914–7.CrossRef
6.
go back to reference Bamford DH, Burnett RM, Stuart DI. Evolution of viral structure. Theor Popul Biol. 2002;61:461–70.CrossRef Bamford DH, Burnett RM, Stuart DI. Evolution of viral structure. Theor Popul Biol. 2002;61:461–70.CrossRef
7.
go back to reference Baker ML, Jiang W, Rixon FJ, Chiu W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol. 2005;79:14967–70.CrossRef Baker ML, Jiang W, Rixon FJ, Chiu W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol. 2005;79:14967–70.CrossRef
8.
go back to reference Bamford DH. Do viruses form lineages across different domains of life? Res Microbiol. 2003;154:231–6.CrossRef Bamford DH. Do viruses form lineages across different domains of life? Res Microbiol. 2003;154:231–6.CrossRef
9.
go back to reference Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr Opin Struct Biol. 2005;15:655–63.CrossRef Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution? Curr Opin Struct Biol. 2005;15:655–63.CrossRef
10.
go back to reference Abrescia NG, Bamford DH, Grimes JM, Stuart DI. Structure unifies the viral universe. Annu Rev Biochem. 2012;81:795–822.CrossRef Abrescia NG, Bamford DH, Grimes JM, Stuart DI. Structure unifies the viral universe. Annu Rev Biochem. 2012;81:795–822.CrossRef
11.
go back to reference Valle M. Structural homology between nucleoproteins of ssRNA viruses. In: Harris J, Bhella D, editors. Virus protein and nucleoprotein complexes. Subcellular biochemistry, vol. 88. Singapore: Springer; 2018. p. 129–45.CrossRef Valle M. Structural homology between nucleoproteins of ssRNA viruses. In: Harris J, Bhella D, editors. Virus protein and nucleoprotein complexes. Subcellular biochemistry, vol. 88. Singapore: Springer; 2018. p. 129–45.CrossRef
12.
go back to reference Krupovic M, Bamford DH. Virus evolution: how far does the double beta-barrel viral lineage extend? Nat Rev Microbiol. 2008;6:941–8.CrossRef Krupovic M, Bamford DH. Virus evolution: how far does the double beta-barrel viral lineage extend? Nat Rev Microbiol. 2008;6:941–8.CrossRef
13.
go back to reference Huiskonen JT, Kivela HM, Bamford DH, Butcher SJ. The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nat Struct Mol Biol. 2004;11:850–6.CrossRef Huiskonen JT, Kivela HM, Bamford DH, Butcher SJ. The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nat Struct Mol Biol. 2004;11:850–6.CrossRef
14.
go back to reference Xiao C, Fischer MG, Bolotaulo DM, Ulloa-Rondeau N, Avila GA, Suttle CA. Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci Rep. 2017;7:5484.CrossRef Xiao C, Fischer MG, Bolotaulo DM, Ulloa-Rondeau N, Avila GA, Suttle CA. Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci Rep. 2017;7:5484.CrossRef
15.
go back to reference Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, et al. Structural studies of the giant mimivirus. PLoS Biol. 2009;7:e92.CrossRef Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, et al. Structural studies of the giant mimivirus. PLoS Biol. 2009;7:e92.CrossRef
16.
go back to reference Bahar MW, Graham SC, Stuart DI, Grimes JM. Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure. 2011;19:1011–20.CrossRef Bahar MW, Graham SC, Stuart DI, Grimes JM. Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure. 2011;19:1011–20.CrossRef
17.
go back to reference Fischer MG, Suttle CA. A virophage at the origin of large DNA transposons. Science. 2011;332:231–4.CrossRef Fischer MG, Suttle CA. A virophage at the origin of large DNA transposons. Science. 2011;332:231–4.CrossRef
18.
go back to reference Krupovic M, Koonin EV. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol. 2015;13:105–15.CrossRef Krupovic M, Koonin EV. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol. 2015;13:105–15.CrossRef
19.
go back to reference Laanto E, Mantynen S, De Colibus L, Marjakangas J, Gillum A, Stuart DI, et al. Virus found in a boreal lake links ssDNA and dsDNA viruses. Proc Natl Acad Sci U S A. 2017;114:8378–83.CrossRef Laanto E, Mantynen S, De Colibus L, Marjakangas J, Gillum A, Stuart DI, et al. Virus found in a boreal lake links ssDNA and dsDNA viruses. Proc Natl Acad Sci U S A. 2017;114:8378–83.CrossRef
20.
go back to reference Jaalinoja HT, Roine E, Laurinmaki P, Kivela HM, Bamford DH, Butcher SJ. Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA. 2008;105:8008–13.CrossRef Jaalinoja HT, Roine E, Laurinmaki P, Kivela HM, Bamford DH, Butcher SJ. Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA. 2008;105:8008–13.CrossRef
21.
go back to reference Rissanen I, Grimes JM, Pawlowski A, Mantynen S, Harlos K, Bamford JK, et al. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure. 2013;21:718–6.CrossRef Rissanen I, Grimes JM, Pawlowski A, Mantynen S, Harlos K, Bamford JK, et al. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure. 2013;21:718–6.CrossRef
22.
go back to reference Gil-Carton D, Jaakkola ST, Charro D, Peralta B, Castano-Diez D, Oksanen HM, et al. Insight into the assembly of viruses with vertical single beta-barrel major capsid proteins. Structure. 2015;23:1866–77.CrossRef Gil-Carton D, Jaakkola ST, Charro D, Peralta B, Castano-Diez D, Oksanen HM, et al. Insight into the assembly of viruses with vertical single beta-barrel major capsid proteins. Structure. 2015;23:1866–77.CrossRef
23.
go back to reference Krupovic M, Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci U S A. 2017;114:E2401–10.CrossRef Krupovic M, Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci U S A. 2017;114:E2401–10.CrossRef
24.
go back to reference Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011;470:198–203.CrossRef Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011;470:198–203.CrossRef
25.
go back to reference Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CrossRef Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CrossRef
26.
go back to reference Yutin N, Shevchenko S, Kapitonov V, Krupovic M, Koonin EV. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 2015;13:95.CrossRef Yutin N, Shevchenko S, Kapitonov V, Krupovic M, Koonin EV. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 2015;13:95.CrossRef
27.
go back to reference Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CrossRef Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CrossRef
28.
go back to reference Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CrossRef Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CrossRef
29.
go back to reference Ignacio-Espinoza JC, Fuhrman JA. A non-tailed twist in the viral tale. Nature. 2018;554:38–9.CrossRef Ignacio-Espinoza JC, Fuhrman JA. A non-tailed twist in the viral tale. Nature. 2018;554:38–9.CrossRef
30.
go back to reference Yutin N, Backstrom D, Ettema TJG, Krupovic M, Koonin EV. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol J. 2018;15:67.CrossRef Yutin N, Backstrom D, Ettema TJG, Krupovic M, Koonin EV. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol J. 2018;15:67.CrossRef
31.
go back to reference Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Bio. 2014;12:e1002024.CrossRef Hong C, Oksanen HM, Liu X, Jakana J, Bamford DH, Chiu W. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Bio. 2014;12:e1002024.CrossRef
32.
go back to reference Stromsten NJ, Bamford DH, Bamford JK. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol. 2005;348:617–29.CrossRef Stromsten NJ, Bamford DH, Bamford JK. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol. 2005;348:617–29.CrossRef
33.
go back to reference Abrescia NG, Grimes JM, Kivela HM, Assenberg R, Sutton GC, Butcher SJ, et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol Cell. 2008;31:749–61.CrossRef Abrescia NG, Grimes JM, Kivela HM, Assenberg R, Sutton GC, Butcher SJ, et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol Cell. 2008;31:749–61.CrossRef
34.
go back to reference Condezo GN, San Martín C. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog. 2017;13:e1006320.CrossRef Condezo GN, San Martín C. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog. 2017;13:e1006320.CrossRef
36.
go back to reference Abrescia NGA, Cockburn JJB, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature. 2004;432:68–74.CrossRef Abrescia NGA, Cockburn JJB, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature. 2004;432:68–74.CrossRef
37.
go back to reference Aalto AP, Bitto D, Ravantti JJ, Bamford DH, Huiskonen JT, Oksanen HM. Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing Salisaeta icosahedral phage 1. Proc Natl Acad Sci U S A. 2012;109:7079–84.CrossRef Aalto AP, Bitto D, Ravantti JJ, Bamford DH, Huiskonen JT, Oksanen HM. Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing Salisaeta icosahedral phage 1. Proc Natl Acad Sci U S A. 2012;109:7079–84.CrossRef
38.
go back to reference Veesler D, Ng TS, Sendamarai AK, Eilers BJ, Lawrence CM, Lok SM, Younge MJ, et al. Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci U S A. 2013;110:5504–9.CrossRef Veesler D, Ng TS, Sendamarai AK, Eilers BJ, Lawrence CM, Lok SM, Younge MJ, et al. Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc Natl Acad Sci U S A. 2013;110:5504–9.CrossRef
39.
go back to reference Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci U S A. 2002;99:14758–63.CrossRef Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci U S A. 2002;99:14758–63.CrossRef
41.
go back to reference Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS. The marine algal virus PpV01 has an icosahedral capsid with T=219 quasisymmetry. J Virol. 2005;79:9236–43.CrossRef Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS. The marine algal virus PpV01 has an icosahedral capsid with T=219 quasisymmetry. J Virol. 2005;79:9236–43.CrossRef
42.
go back to reference Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A. 2010;107:19508–13.CrossRef Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A. 2010;107:19508–13.CrossRef
43.
go back to reference Klose K, Kuznetsov YG, Xiao C, Sun S, McPherson A, Rossmann MG. The three-dimensional structure of Mimivirus. Intervirology. 2010;53:268–73.CrossRef Klose K, Kuznetsov YG, Xiao C, Sun S, McPherson A, Rossmann MG. The three-dimensional structure of Mimivirus. Intervirology. 2010;53:268–73.CrossRef
44.
go back to reference Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, et al. Structure of sputnik, a virophage, at 3.5-Å resolution. Proc Natl Acad Sci U S A. 2012;109:18431–6.CrossRef Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, et al. Structure of sputnik, a virophage, at 3.5-Å resolution. Proc Natl Acad Sci U S A. 2012;109:18431–6.CrossRef
45.
go back to reference Okamoto K, Miyazaki N, Reddy HKN, Hantke MF, Maia FRNC, Larsson DSD, et al. Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology. 2018;516:239–45.CrossRef Okamoto K, Miyazaki N, Reddy HKN, Hantke MF, Maia FRNC, Larsson DSD, et al. Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology. 2018;516:239–45.CrossRef
46.
go back to reference Doutre G, Philippe N, Abergel C, Claverie JM. Genome analysis of the first Marseilleviridae representative from Australia indicates that most of its genes contribute to virus fitness. J Virol. 2014;88:14340–9.CrossRef Doutre G, Philippe N, Abergel C, Claverie JM. Genome analysis of the first Marseilleviridae representative from Australia indicates that most of its genes contribute to virus fitness. J Virol. 2014;88:14340–9.CrossRef
47.
go back to reference Klose T, Reteno DG, Benamar S, Hollerbach A, Colson P, La Scola B, et al. Structure of faustovirus, a large dsDNA virus. Proc Natl Acad Sci USA. 2016;113:6206–11.CrossRef Klose T, Reteno DG, Benamar S, Hollerbach A, Colson P, La Scola B, et al. Structure of faustovirus, a large dsDNA virus. Proc Natl Acad Sci USA. 2016;113:6206–11.CrossRef
49.
go back to reference Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N, Klose T, et al. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol. 2015;89:6585–94.CrossRef Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N, Klose T, et al. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol. 2015;89:6585–94.CrossRef
50.
go back to reference Andreani J, Khalil JYB, Sevvana M, Benamar S, Di Pinto F, Bitam I, et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J Virol. 2017;91:e00212–7.CrossRef Andreani J, Khalil JYB, Sevvana M, Benamar S, Di Pinto F, Bitam I, et al. Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J Virol. 2017;91:e00212–7.CrossRef
51.
go back to reference Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS. Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 2000;7:101–103. Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, Baker TS. Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 2000;7:101–103.
52.
go back to reference Yan X, Yu Z, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, et al. The capsid proteins of a large, icosahedral dsDNA virus. J Mol Biol. 2009;385:1287–99.CrossRef Yan X, Yu Z, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, et al. The capsid proteins of a large, icosahedral dsDNA virus. J Mol Biol. 2009;385:1287–99.CrossRef
53.
go back to reference Claverie JM, Abergel C. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses. 2018;10:e506.CrossRef Claverie JM, Abergel C. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses. 2018;10:e506.CrossRef
Metadata
Title
The so far farthest reaches of the double jelly roll capsid protein fold
Authors
Carmen San Martín
Mark J. van Raaij
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1097-1

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue