Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Combined use of ELISA and Western blot with recombinant N protein is a powerful tool for the immunodiagnosis of avian infectious bronchitis

Authors: Paula Fonseca Finger, Michele Soares Pepe, Luana Alves Dummer, Carolina Georg Magalhães, Clarissa Caetano de Castro, Silvia de Oliveira Hübner, Fábio Pereira Leivas Leite, Giseli Aparecida Ritterbusch, Paulo Augusto Esteves, Fabricio Rochedo Conceição

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

The avian infectious bronchitis virus (IBV) remains a significant source of loss in the poultry industry and early diagnosis is required to prevent the disease from spreading. This study examined the combined use of an ELISA and Western blot (WB) to detect antibodies against the nucleocapsid protein (N) of IBV. The coding sequence for N was amplified by RT-PCR and expressed in Escherichia coli. A soluble recombinant N protein (rN) of approximately 50 kDa was obtained. A total of 389 sera were tested against the rN in ELISA and the results were compared with those of the commercial IDEXX IBV Ab test. ELISA-rN achieved a 90.34% sensitivity and 90.16% specificity. WB confirmed all false negative sera in ELISA-rN or IDEXX test as truly positive. The current study indicate that the combined use of rN in ELISA and WB is a powerful tool for the immunodiagnosis of avian infectious bronchitis.

Methods

Constructed recombinant pAE/n expression vectors were used to transform E. coli BL21(DE3) Star competent cells (Invitrogen). The rN of infectious bronchitis virus was purified by affinity chromatography using HisTrap HP 1 mL columns pre-packed with pre-charged Ni Sepharose in the ÄKTAprime Automated Liquid Chromatography system (GE Healthcare). A total of 389 serum samples from chickens were used to develop and evaluate the ELISA-rN test. To standardize the indirect ELISA development, serum dilutions (1:100, 1:200 and 1:400) and different concentrations of purified rN antigen (50, 100 and 200 ng/well) were tested. Positive and negative sera for IBV were used as controls. The results were compared with those obtained from a commercial kit. Serum samples scored as negative with the commercial kit but as positive with the ELISA-rN were further analysed by Western blot analyses using the rN protein as an antigen. The results of the ELISA-rN were compared to the commercial kit results using receiver-operating characteristics curves, area under the curve, and confidence intervals with the software GraphPad Prism version 6.0 for Windows (GraphPad Software, USA).

Results

The expected cDNA fragment of approximately 1240 bp was successfully amplified by PCR using primers designed to select for the coding region of the N protein. The rN was expressed as a soluble protein to avoid the refolding steps and, after purification a yield of 10 mg/L of rN was obtained. The SDS-PAGE results demonstrated the presence of two distinct bands that had a molecular mass of approximately 45 and 50 KDa. Out of 244 sera that scored positive in the commercial ELISA IDEXX IBV Ab Test, 220 were also positive in the ELISA-rN, yielding an ELISA-rN test sensitivity of 90.16%. Out of 145 sera that scored negative in the IDEXX IBV Ab Test, 131 also scored negative in the ELISA-rN, indicating a specificity of 90.34%. Sera that tested negative in the ELISA-rN and positive in the commercial test also reacted with the rN protein in Western blot.

Conclusions

The association between the ELISA and Western blot techniques developed in this study with a subunit of IBV (rN) were able to detect antibodies that the commercial ELISA did not detect suggesting that the ELISA-rN has greater sensitivity.
Literature
1.
go back to reference Cavanagh D, Elus MM, Cook JK. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol. 1997;26:63–74.CrossRef Cavanagh D, Elus MM, Cook JK. Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol. 1997;26:63–74.CrossRef
2.
go back to reference Raj GD, Jones RC. Infectious bronchitis virus: Immunopathogenesis of infection in the chicken. Avian Pathol. 1997;26:677–706.CrossRef Raj GD, Jones RC. Infectious bronchitis virus: Immunopathogenesis of infection in the chicken. Avian Pathol. 1997;26:677–706.CrossRef
3.
go back to reference Muneer MA, Newman JA, Halvorson DA, Sivanandan V, Nagaraja KV, Coon CN. Efficacy of infectious bronchitis virus vaccines against heterologous challenge. Res Vet Sci. 1988;45:22–7.CrossRef Muneer MA, Newman JA, Halvorson DA, Sivanandan V, Nagaraja KV, Coon CN. Efficacy of infectious bronchitis virus vaccines against heterologous challenge. Res Vet Sci. 1988;45:22–7.CrossRef
4.
go back to reference Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38:281–97.CrossRef Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38:281–97.CrossRef
5.
go back to reference Mendonça JFP, Martins NRDS, De Carvalho LB, De Sá MEP, De Melo CB. Bronquite infecciosa das galinhas: conhecimentos atuais, cepas e vacinas no Brasil. Ciência Rural. 2009;39:2559–66.CrossRef Mendonça JFP, Martins NRDS, De Carvalho LB, De Sá MEP, De Melo CB. Bronquite infecciosa das galinhas: conhecimentos atuais, cepas e vacinas no Brasil. Ciência Rural. 2009;39:2559–66.CrossRef
6.
go back to reference Macnaughton MR, Madge MH, Davies HA, Dourmashkin RR. Polypeptides of the surface projections and the ribonucleoprotein of avian infectious bronchitis virus. J Virol. 1977;24:821–5.PubMedPubMedCentral Macnaughton MR, Madge MH, Davies HA, Dourmashkin RR. Polypeptides of the surface projections and the ribonucleoprotein of avian infectious bronchitis virus. J Virol. 1977;24:821–5.PubMedPubMedCentral
7.
go back to reference Boursnell ME, Binns MM, Foulds IJ, Brown TD. Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J Gen Virol. 1985;66:573–80.CrossRef Boursnell ME, Binns MM, Foulds IJ, Brown TD. Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. J Gen Virol. 1985;66:573–80.CrossRef
8.
go back to reference Williams AK, Li W, Sneed LW, Collisson EW. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses. Virus Res. 1992;25:213–22.CrossRef Williams AK, Li W, Sneed LW, Collisson EW. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses. Virus Res. 1992;25:213–22.CrossRef
9.
go back to reference Sneed LW, Butcher GD, Parr R, Wang L, Collisson EW. Comparisons of the structural proteins of avian infectious bronchitis virus as determined by western blot analysis. Viral Immunol. 1989;2:221–7.CrossRef Sneed LW, Butcher GD, Parr R, Wang L, Collisson EW. Comparisons of the structural proteins of avian infectious bronchitis virus as determined by western blot analysis. Viral Immunol. 1989;2:221–7.CrossRef
10.
go back to reference Seo SH, Collisson EW. Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol. 1997;71:5173–7.PubMedPubMedCentral Seo SH, Collisson EW. Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol. 1997;71:5173–7.PubMedPubMedCentral
11.
go back to reference Ndifuna A, Waters AK, Zhou M, Collisson EW. Recombinant nucleocapsid protein is potentially an inexpensive, effective serodiagnostic reagent for infectious bronchitis virus. J Virol Methods. 1998;70:37–44.CrossRef Ndifuna A, Waters AK, Zhou M, Collisson EW. Recombinant nucleocapsid protein is potentially an inexpensive, effective serodiagnostic reagent for infectious bronchitis virus. J Virol Methods. 1998;70:37–44.CrossRef
12.
go back to reference Di Fabio J, Rossini LI, Orbell SJ, Paul G, Huggins MB, Malo A, et al. Characterization of infectious bronchitis viruses isolated from outbreaks of disease in commercial flocks in Brazil. Avian Dis. 2000;44:582–9.CrossRef Di Fabio J, Rossini LI, Orbell SJ, Paul G, Huggins MB, Malo A, et al. Characterization of infectious bronchitis viruses isolated from outbreaks of disease in commercial flocks in Brazil. Avian Dis. 2000;44:582–9.CrossRef
13.
go back to reference Pradhan SK, Kamble NM, Pillai AS, Gaikwad SS, Khulape SA, Reddy MR, et al. Recombinant nucleocapsid protein based single serum dilution ELISA for the detection of antibodies to infectious bronchitis virus in poultry. J Virol Methods. 2014;209:1–6.CrossRef Pradhan SK, Kamble NM, Pillai AS, Gaikwad SS, Khulape SA, Reddy MR, et al. Recombinant nucleocapsid protein based single serum dilution ELISA for the detection of antibodies to infectious bronchitis virus in poultry. J Virol Methods. 2014;209:1–6.CrossRef
14.
go back to reference Abdel-Moneim AS, Giesow K, Keil GM. High-level protein expression following single and dual gene cloning of infectious bronchitis virus N and S genes using Baculovirus systems. Viral Immunol. 2014;27:75–81.CrossRef Abdel-Moneim AS, Giesow K, Keil GM. High-level protein expression following single and dual gene cloning of infectious bronchitis virus N and S genes using Baculovirus systems. Viral Immunol. 2014;27:75–81.CrossRef
15.
go back to reference Lugovskaya NN, Scherbakov AV, Yakovleva AS, Tsyvanyuk MA, Mudrak NS, Drygin VV, et al. Detection of antibodies to avian infectious bronchitis virus by a recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. J Virol Methods. 2006;135:292–6.CrossRef Lugovskaya NN, Scherbakov AV, Yakovleva AS, Tsyvanyuk MA, Mudrak NS, Drygin VV, et al. Detection of antibodies to avian infectious bronchitis virus by a recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. J Virol Methods. 2006;135:292–6.CrossRef
16.
go back to reference Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol. 1994;138:117–34.CrossRef Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol. 1994;138:117–34.CrossRef
17.
go back to reference Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol. 2005;79:6620–30.CrossRef Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol. 2005;79:6620–30.CrossRef
18.
go back to reference Zhang DY, Zhou JY, Fang J, Hu JQ, Wu JX, An MAX. ELISA for antibodies to infectious bronchitis virus based on nucleocapsid protein produced in Escherichia coli. Vet Med. 2005:336–44. Zhang DY, Zhou JY, Fang J, Hu JQ, Wu JX, An MAX. ELISA for antibodies to infectious bronchitis virus based on nucleocapsid protein produced in Escherichia coli. Vet Med. 2005:336–44.
19.
go back to reference Chen H, Coote B, Attree S, Hiscox JA. Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus. Avian Pathol. 2003;32:519–26.CrossRef Chen H, Coote B, Attree S, Hiscox JA. Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus. Avian Pathol. 2003;32:519–26.CrossRef
20.
go back to reference Fátima MDE, Montassier S, Nucleotídeos SDE, Dos G, Montassier MFS. Diversidade Genética de Amostras Brasileiras do Vírus da Bronquite Infecciosa Determinada pelo Sequenciamento de Nucleotídeos dos Genes N e S1; 2008. p. 105. f. Tese (Doutorado em Microbiologia) – Instituto de Ciências Biomédicas, Univers. 2008 Fátima MDE, Montassier S, Nucleotídeos SDE, Dos G, Montassier MFS. Diversidade Genética de Amostras Brasileiras do Vírus da Bronquite Infecciosa Determinada pelo Sequenciamento de Nucleotídeos dos Genes N e S1; 2008. p. 105. f. Tese (Doutorado em Microbiologia) – Instituto de Ciências Biomédicas, Univers. 2008
21.
go back to reference Witte SB, Chard-Bergstrom C, Loughin TA, Kapil S. Development of a recombinant nucleoprotein-based enzyme-linked immunosorbent assay for quantification of antibodies against porcine reproductive and respiratory syndrome virus. Clin Diagn Lab Immunol. 2000;7:700–2.PubMedPubMedCentral Witte SB, Chard-Bergstrom C, Loughin TA, Kapil S. Development of a recombinant nucleoprotein-based enzyme-linked immunosorbent assay for quantification of antibodies against porcine reproductive and respiratory syndrome virus. Clin Diagn Lab Immunol. 2000;7:700–2.PubMedPubMedCentral
22.
go back to reference Beck ST, Leite OM, Arruda RS. Combined use of Western blot / ELISA to improve the serological diagnosis of human tuberculosis. Braz J Infect Dis. 2005;9:35–43.CrossRef Beck ST, Leite OM, Arruda RS. Combined use of Western blot / ELISA to improve the serological diagnosis of human tuberculosis. Braz J Infect Dis. 2005;9:35–43.CrossRef
23.
go back to reference Ding M, Wang H, Cao H, Fan W, Ma B, Xu P, et al. Development of a multi-epitope antigen of S protein-based ELISA for antibodies detection against infectious bronchitis virus. Biosci Biotechnol Biochem. 2015;79:1287–95.CrossRef Ding M, Wang H, Cao H, Fan W, Ma B, Xu P, et al. Development of a multi-epitope antigen of S protein-based ELISA for antibodies detection against infectious bronchitis virus. Biosci Biotechnol Biochem. 2015;79:1287–95.CrossRef
24.
go back to reference Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA. Virus Res. 2000;67:31–9.CrossRef Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3′ genomic RNA. Virus Res. 2000;67:31–9.CrossRef
25.
go back to reference Cavanagh D. Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Virol. 1983;64(Pt 8):1787–91.CrossRef Cavanagh D. Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Virol. 1983;64(Pt 8):1787–91.CrossRef
Metadata
Title
Combined use of ELISA and Western blot with recombinant N protein is a powerful tool for the immunodiagnosis of avian infectious bronchitis
Authors
Paula Fonseca Finger
Michele Soares Pepe
Luana Alves Dummer
Carolina Georg Magalhães
Clarissa Caetano de Castro
Silvia de Oliveira Hübner
Fábio Pereira Leivas Leite
Giseli Aparecida Ritterbusch
Paulo Augusto Esteves
Fabricio Rochedo Conceição
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1096-2

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue