Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Mass spectrometry-based investigation of measles and mumps virus proteome

Authors: Dora Sviben, Dubravko Forcic, Beata Halassy, Günter Allmaier, Martina Marchetti-Deschmann, Marija Brgles

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Measles (MEV) and mumps virus (MUV) are enveloped, non-segmented, negative single stranded RNA viruses of the family Paramyxoviridae, and are the cause of measles and mumps, respectively, both preventable by vaccination. Aside from proteins coded by the viral genome, viruses are considered to contain host cell proteins (HCPs). The presence of extracellular vesicles (ECVs), which are often co-purified with viruses due to their similarity in size, density and composition, also contributes to HCPs detected in virus preparations, and this has often been neglected. The aim was to identify which virus-coded proteins are present in MEV and MUV virions, and to try to detect which HCPs, if any, are incorporated inside the virions or adsorbed on their outer surface, and which are more likely to be a contamination from co-purified ECVs.

Methods

MUV, MEV and ECVs were purified by ultracentrifugation, hydrophobic interaction chromatography and immunoaffinity chromatography, proteins in the samples were resolved by SDS-PAGE and subjected to identification by MALDI-TOF/TOF-MS. A comparative analysis of HCPs present in all samples was carried out.

Results

By proteomics approach, it was verified that almost all virus-coded proteins are present in MEV and MUV particles. Protein C in MEV which was until now considered to be non-structural viral protein, was found to be present inside the MeV virions. Results on the presence of HCPs in differently purified virus preparations imply that actin, annexins, cyclophilin A, moesin and integrin β1 are part of the virions.

Conclusions

All HCPs detected in the viruses are present in ECVs as well, indicating their possible function in vesicle formation, or that most of them are only present in ECVs. Only five HCPs were constantly present in purified virus preparations, regardless of the purification method used, implying they are likely the integral part of the virions. The approach described here is helpful for further investigation of HCPs in other virus preparations.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Griffin DE. Measles Virus. In: Knipe DM, Howley PM, editors. Fields Virol. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 1042–69. Griffin DE. Measles Virus. In: Knipe DM, Howley PM, editors. Fields Virol. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 1042–69.
3.
go back to reference Rubin SA, Sauder CJ, Carbone KM. Mumps Virus. In: Knipe DM, Howley PM, editors. Fields Virol. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 1024–41. Rubin SA, Sauder CJ, Carbone KM. Mumps Virus. In: Knipe DM, Howley PM, editors. Fields Virol. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 1024–41.
4.
go back to reference Weiss K, Salzig D, Röder Y, Gerstenberger J, Mühlebach MD, Cichutek K, et al. Influence of process conditions on measles virus stability. Am J Biochem Biotechnol. 2013;9:243–54.CrossRef Weiss K, Salzig D, Röder Y, Gerstenberger J, Mühlebach MD, Cichutek K, et al. Influence of process conditions on measles virus stability. Am J Biochem Biotechnol. 2013;9:243–54.CrossRef
5.
go back to reference Sviben D, Forčić D, Kurtović T, Halassy B, Brgles M. Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus. Arch Virol. 2016;161:1455–67.CrossRefPubMed Sviben D, Forčić D, Kurtović T, Halassy B, Brgles M. Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus. Arch Virol. 2016;161:1455–67.CrossRefPubMed
6.
go back to reference Kingston RL, Baase WA, Gay LS. Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins. J Virol. 2004;78:8630–40.CrossRefPubMedCentralPubMed Kingston RL, Baase WA, Gay LS. Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins. J Virol. 2004;78:8630–40.CrossRefPubMedCentralPubMed
7.
go back to reference Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP. Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol. 2009;83:7261–72.CrossRefPubMedCentralPubMed Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP. Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol. 2009;83:7261–72.CrossRefPubMedCentralPubMed
8.
go back to reference Liljeroos L, Huiskonen JT, Ora A, Susi P, Butcher SJ. Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc Natl Acad Sci U S A. 2011;108:18085–90.CrossRefPubMedCentralPubMed Liljeroos L, Huiskonen JT, Ora A, Susi P, Butcher SJ. Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc Natl Acad Sci U S A. 2011;108:18085–90.CrossRefPubMedCentralPubMed
9.
go back to reference Ruigrok RWWH, Crépin T, Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol. 2011;14:504–10.CrossRefPubMed Ruigrok RWWH, Crépin T, Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol. 2011;14:504–10.CrossRefPubMed
10.
go back to reference El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses. 2014;6:3019–54.CrossRefPubMedCentralPubMed El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses. 2014;6:3019–54.CrossRefPubMedCentralPubMed
11.
go back to reference Bellini WJ, Englund G, Rozenblatt S, Arnheiter H, Richardson CD. Measles virus P gene codes for two proteins. J Virol. 1985;53:908–19.PubMedPubMedCentral Bellini WJ, Englund G, Rozenblatt S, Arnheiter H, Richardson CD. Measles virus P gene codes for two proteins. J Virol. 1985;53:908–19.PubMedPubMedCentral
12.
go back to reference Paterson RG, Lamb A. RNA editing by G-nucleotide insertion in mumps virus P-gene mRNA transcripts. J Virol. 1990;64:4137–45.PubMedPubMedCentral Paterson RG, Lamb A. RNA editing by G-nucleotide insertion in mumps virus P-gene mRNA transcripts. J Virol. 1990;64:4137–45.PubMedPubMedCentral
13.
go back to reference Radecke F, Billeter MA. The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology. 1996;217:418–21.CrossRefPubMed Radecke F, Billeter MA. The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology. 1996;217:418–21.CrossRefPubMed
14.
go back to reference Escoffier C, Manie S, Vincent S, Muller CP, Billeter M, Gerlier D. Nonstructural protein C is required for efficient measles virus replication in human peripheral blood cells. J Virol. 1999;73:1695–8.PubMedPubMedCentral Escoffier C, Manie S, Vincent S, Muller CP, Billeter M, Gerlier D. Nonstructural protein C is required for efficient measles virus replication in human peripheral blood cells. J Virol. 1999;73:1695–8.PubMedPubMedCentral
15.
go back to reference Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MBA. V and C proteins of measles virus function as virulence factors in vivo. Virology. 2000;267:80–9.CrossRefPubMed Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MBA. V and C proteins of measles virus function as virulence factors in vivo. Virology. 2000;267:80–9.CrossRefPubMed
16.
go back to reference Xu P, Luthra P, Li Z, Fuentes S, D’Andrea JA, Wu J, et al. The V protein of mumps virus plays a critical role in pathogenesis. J Virol. 2012;86:1768–76.CrossRefPubMedCentralPubMed Xu P, Luthra P, Li Z, Fuentes S, D’Andrea JA, Wu J, et al. The V protein of mumps virus plays a critical role in pathogenesis. J Virol. 2012;86:1768–76.CrossRefPubMedCentralPubMed
17.
go back to reference Wilson RL, Fuentes SM, Wang P, Taddeo EC, Klatt A, Henderson AJ, et al. Function of small hydrophobic proteins of paramyxovirus. J Virol. 2006;80:1700–9.CrossRefPubMedCentralPubMed Wilson RL, Fuentes SM, Wang P, Taddeo EC, Klatt A, Henderson AJ, et al. Function of small hydrophobic proteins of paramyxovirus. J Virol. 2006;80:1700–9.CrossRefPubMedCentralPubMed
18.
go back to reference Takeuchi K, Tanabayashi K, Hishiyama M, Yamada A. The mumps virus SH protein is a membrane protein and not essential for virus growth. Virology. 1996;225:156–62.CrossRefPubMed Takeuchi K, Tanabayashi K, Hishiyama M, Yamada A. The mumps virus SH protein is a membrane protein and not essential for virus growth. Virology. 1996;225:156–62.CrossRefPubMed
19.
go back to reference Hall WW, Martin SJ. Purification and characterization of measles virus. J Gen Virol. 1973;19:175–88.CrossRefPubMed Hall WW, Martin SJ. Purification and characterization of measles virus. J Gen Virol. 1973;19:175–88.CrossRefPubMed
21.
go back to reference Naruse H, Nagai Y, Yoshida T, Hamaguchi M, Matsumoto T, Isomura S, et al. The polypeptides of mumps virus and their synthesis in infected chick embryo cells. Virology. 1981;112:119–30.CrossRefPubMed Naruse H, Nagai Y, Yoshida T, Hamaguchi M, Matsumoto T, Isomura S, et al. The polypeptides of mumps virus and their synthesis in infected chick embryo cells. Virology. 1981;112:119–30.CrossRefPubMed
22.
go back to reference Herrler G, Compans RW. Synthesis of mumps virus polypeptides in infected Vero cells. Virology. 1982;119:430–8.CrossRefPubMed Herrler G, Compans RW. Synthesis of mumps virus polypeptides in infected Vero cells. Virology. 1982;119:430–8.CrossRefPubMed
23.
go back to reference Swoveland PT. Isolation of measles virus polypeptides from infected brain tissue by affinity chromatography. J Virol Methods. 1986;13:333–41.CrossRefPubMed Swoveland PT. Isolation of measles virus polypeptides from infected brain tissue by affinity chromatography. J Virol Methods. 1986;13:333–41.CrossRefPubMed
24.
go back to reference Mountcastle WE, Choppin PW. A comparison of the polypeptides of four measles virus strains. Virology. 1977;78:463–74.CrossRefPubMed Mountcastle WE, Choppin PW. A comparison of the polypeptides of four measles virus strains. Virology. 1977;78:463–74.CrossRefPubMed
25.
go back to reference Graves MC, Silver SM, Choppin PW. Measles virus polypeptide synthesis in infected cells. Virology. 1978;86:254–63.CrossRefPubMed Graves MC, Silver SM, Choppin PW. Measles virus polypeptide synthesis in infected cells. Virology. 1978;86:254–63.CrossRefPubMed
26.
27.
go back to reference Hardwick JM, Bussell RH. Glycoproteins of measles virus under reducing and nonreducing conditions. J Virol. 1978;25:687–92.PubMedPubMedCentral Hardwick JM, Bussell RH. Glycoproteins of measles virus under reducing and nonreducing conditions. J Virol. 1978;25:687–92.PubMedPubMedCentral
29.
go back to reference Rima BK, Martin SJ. Effect of undiluted passage on the polypeptides of measles virus. J Gen Virol. 1979;44:135–44.CrossRefPubMed Rima BK, Martin SJ. Effect of undiluted passage on the polypeptides of measles virus. J Gen Virol. 1979;44:135–44.CrossRefPubMed
30.
go back to reference Rima BK, Roberts MW, McAdam WD, Martin SJ. Polypeptide synthesis in mumps virus-infected cells. J Gen Virol. 1980;46:501–5.CrossRefPubMed Rima BK, Roberts MW, McAdam WD, Martin SJ. Polypeptide synthesis in mumps virus-infected cells. J Gen Virol. 1980;46:501–5.CrossRefPubMed
31.
go back to reference McCarthy M, Johnson RT. A comparison of the structural polypeptides of five strains of mumps virus. J Gen Virol. 1980;46:15–27.CrossRefPubMed McCarthy M, Johnson RT. A comparison of the structural polypeptides of five strains of mumps virus. J Gen Virol. 1980;46:15–27.CrossRefPubMed
32.
go back to reference Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, et al. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J. 2016;13:9.CrossRefPubMedCentralPubMed Brgles M, Bonta M, Šantak M, Jagušić M, Forčić D, Halassy B, et al. Identification of mumps virus protein and lipid composition by mass spectrometry. Virol J. 2016;13:9.CrossRefPubMedCentralPubMed
33.
35.
go back to reference Franke EK, Yuan HEH, Luban J. Specific incorporation of cyclophilin a into HIV-1 virions. Nature. 1994;372:359–62.CrossRefPubMed Franke EK, Yuan HEH, Luban J. Specific incorporation of cyclophilin a into HIV-1 virions. Nature. 1994;372:359–62.CrossRefPubMed
36.
go back to reference Michael K, Klupp BG, Mettenleiter TC, Karger A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol. 2006;80:1332–9.CrossRefPubMedCentralPubMed Michael K, Klupp BG, Mettenleiter TC, Karger A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol. 2006;80:1332–9.CrossRefPubMedCentralPubMed
37.
go back to reference Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80:9039–52.CrossRefPubMedCentralPubMed Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80:9039–52.CrossRefPubMedCentralPubMed
38.
go back to reference Bess JW, Gorelick RJ, Bosche WJ, Henderson LE, Arthur LO. Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology. 1997;230:134–44.CrossRefPubMed Bess JW, Gorelick RJ, Bosche WJ, Henderson LE, Arthur LO. Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology. 1997;230:134–44.CrossRefPubMed
39.
go back to reference Gluschankof P, Mondor I, Gelderblom HR, Sattentau QJ. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology. 1997;230:125–33.CrossRefPubMed Gluschankof P, Mondor I, Gelderblom HR, Sattentau QJ. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology. 1997;230:125–33.CrossRefPubMed
40.
go back to reference El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.CrossRefPubMed El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.CrossRefPubMed
41.
go back to reference Nolte-‘t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A. 2016;113:9155–61.CrossRefPubMedCentralPubMed Nolte-‘t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A. 2016;113:9155–61.CrossRefPubMedCentralPubMed
42.
go back to reference Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, et al. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics. 2010;9:1829–48.CrossRefPubMedCentralPubMed Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, et al. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics. 2010;9:1829–48.CrossRefPubMedCentralPubMed
43.
go back to reference Sviben D, Forčić D, Ivancic-Jelecki J, Halassy B, Brgles M. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle change and total-to-infective particle ratio. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1054:10–9.CrossRef Sviben D, Forčić D, Ivancic-Jelecki J, Halassy B, Brgles M. Recovery of infective virus particles in ion-exchange and hydrophobic interaction monolith chromatography is influenced by particle change and total-to-infective particle ratio. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1054:10–9.CrossRef
44.
go back to reference Brgles M, Sviben D, Forčić D, Halassy B. Nonspecific native elution of proteins and mumps virus in immunoaffiity chromatography. J Chromatogr A. 2016;1447:107–14.CrossRefPubMed Brgles M, Sviben D, Forčić D, Halassy B. Nonspecific native elution of proteins and mumps virus in immunoaffiity chromatography. J Chromatogr A. 2016;1447:107–14.CrossRefPubMed
45.
go back to reference World Health Organization. Live measles virus vaccine. In: manual of laboratory methods, document WHO/VSQ/9704. Geneva: World Health Organization; 1997. p. 79–82. World Health Organization. Live measles virus vaccine. In: manual of laboratory methods, document WHO/VSQ/9704. Geneva: World Health Organization; 1997. p. 79–82.
46.
go back to reference Forcic D, Košutić-Gulija T, Šantak M, Jug R, Ivancic-Jelecki J, Markusic M, et al. Comparisons of mumps virus potency estimates obtained by 50% cell culture infective dose assay and plaque assay. Vaccine. 2010;28:1887–92.CrossRefPubMed Forcic D, Košutić-Gulija T, Šantak M, Jug R, Ivancic-Jelecki J, Markusic M, et al. Comparisons of mumps virus potency estimates obtained by 50% cell culture infective dose assay and plaque assay. Vaccine. 2010;28:1887–92.CrossRefPubMed
47.
go back to reference Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem. 1996;68:850–8.CrossRefPubMed Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem. 1996;68:850–8.CrossRefPubMed
48.
go back to reference Brgles M, Kurtovic T, Kovacic L, Križaj I, Barut MM, Balija ML, et al. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography. Anal Bioanal Chem. 2014;406:293–304.CrossRefPubMed Brgles M, Kurtovic T, Kovacic L, Križaj I, Barut MM, Balija ML, et al. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography. Anal Bioanal Chem. 2014;406:293–304.CrossRefPubMed
49.
go back to reference Greco TM, Diner BA, Cristea IM. The impact of mass spectrometry–based proteomics on fundamental discoveries in virology. Annu Rev Virol. 2014;1:581–604.CrossRefPubMedPubMedCentral Greco TM, Diner BA, Cristea IM. The impact of mass spectrometry–based proteomics on fundamental discoveries in virology. Annu Rev Virol. 2014;1:581–604.CrossRefPubMedPubMedCentral
50.
go back to reference Caballero M, Carabana J, Ortego J, Fernandez-Munoz R, Celma ML. Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J Virol. 1998;72:8198–204.PubMedPubMedCentral Caballero M, Carabana J, Ortego J, Fernandez-Munoz R, Celma ML. Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J Virol. 1998;72:8198–204.PubMedPubMedCentral
51.
go back to reference Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S. Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol. 2007;88:1243–50.CrossRefPubMed Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S. Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol. 2007;88:1243–50.CrossRefPubMed
52.
go back to reference Förster A, Maertens GN, Farrell PJ, Bajorek M. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol. 2015;89:4624–35.CrossRefPubMedCentralPubMed Förster A, Maertens GN, Farrell PJ, Bajorek M. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol. 2015;89:4624–35.CrossRefPubMedCentralPubMed
53.
go back to reference Fuentes S, Sun D, Schmitt A, He B. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression. Future Microbiol. 2010;5:9–13.CrossRefPubMed Fuentes S, Sun D, Schmitt A, He B. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression. Future Microbiol. 2010;5:9–13.CrossRefPubMed
54.
go back to reference Cox R, Green TJ, Purushotham S, Deivanayagam C, Bedwell GJ, Prevelige PE, et al. Structural and functional characterization of the mumps virus phosphoprotein. J Virol. 2013;87:7558–68.CrossRefPubMedCentralPubMed Cox R, Green TJ, Purushotham S, Deivanayagam C, Bedwell GJ, Prevelige PE, et al. Structural and functional characterization of the mumps virus phosphoprotein. J Virol. 2013;87:7558–68.CrossRefPubMedCentralPubMed
55.
go back to reference Takeuchi K, Tanabayashi K, Hishiyama M, Yamada Y, Yamada A, Sugiura A. Detection and characterization of mumps virus V protein. Virology. 1990;178:247–53.CrossRefPubMed Takeuchi K, Tanabayashi K, Hishiyama M, Yamada Y, Yamada A, Sugiura A. Detection and characterization of mumps virus V protein. Virology. 1990;178:247–53.CrossRefPubMed
56.
go back to reference Waxham MN, Merz DC, Wolinsky JS. Intracellular maturation of mumps virus hemagglutinin-neuraminidase glycoprotein: conformational changes detected with monoclonal antibodies. J Virol. 1986;59:392–400.PubMedPubMedCentral Waxham MN, Merz DC, Wolinsky JS. Intracellular maturation of mumps virus hemagglutinin-neuraminidase glycoprotein: conformational changes detected with monoclonal antibodies. J Virol. 1986;59:392–400.PubMedPubMedCentral
57.
go back to reference Šantak M, Markušić M, Balija ML, Kopač SK, Jug R, Örvell C, et al. Accumulation of defective interfering viral particles in only a few passages in Vero cells attenuates mumps virus neurovirulence. Microbes Infect. 2015;17:228–36.CrossRefPubMed Šantak M, Markušić M, Balija ML, Kopač SK, Jug R, Örvell C, et al. Accumulation of defective interfering viral particles in only a few passages in Vero cells attenuates mumps virus neurovirulence. Microbes Infect. 2015;17:228–36.CrossRefPubMed
58.
go back to reference Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000.CrossRefPubMed Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000.CrossRefPubMed
59.
go back to reference Kattenhorn LM, Mills R, Wagner M, Lomsadze A, Makeev V, Borodovsky M, et al. Identification of proteins associated with murine cytomegalovirus virions. J Virol. 2004;78:11187–97.CrossRefPubMedCentralPubMed Kattenhorn LM, Mills R, Wagner M, Lomsadze A, Makeev V, Borodovsky M, et al. Identification of proteins associated with murine cytomegalovirus virions. J Virol. 2004;78:11187–97.CrossRefPubMedCentralPubMed
60.
go back to reference Heuvel MJ, Van Den JBJ, Jacobs RM. Isolation of a bovine plasma fibronectin-containing complex which inhibits the expression of bovine leukemia virus p24. J Virol. 2005;79:8164–70.CrossRefPubMedCentralPubMed Heuvel MJ, Van Den JBJ, Jacobs RM. Isolation of a bovine plasma fibronectin-containing complex which inhibits the expression of bovine leukemia virus p24. J Virol. 2005;79:8164–70.CrossRefPubMedCentralPubMed
61.
go back to reference Bollineni RC, Guldvik IJ, Grönberg H, Wiklund F, Mills IG, Thiede B. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst. 2015;140:8109–17.CrossRefPubMed Bollineni RC, Guldvik IJ, Grönberg H, Wiklund F, Mills IG, Thiede B. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst. 2015;140:8109–17.CrossRefPubMed
62.
go back to reference Moyer SA, Baker SC, Horikami SM. Host cell proteins required for measles virus reproduction. J Gen Virol. 1990;71:775–83.CrossRefPubMed Moyer SA, Baker SC, Horikami SM. Host cell proteins required for measles virus reproduction. J Gen Virol. 1990;71:775–83.CrossRefPubMed
63.
go back to reference Giuffre RM, Tovell DR, Kay CM, Tyrrell DL. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol. 1982;42:963–8.PubMedPubMedCentral Giuffre RM, Tovell DR, Kay CM, Tyrrell DL. Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol. 1982;42:963–8.PubMedPubMedCentral
64.
go back to reference Cudmore S, Reckmann I, Michael W. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 1997;5:142–8.CrossRefPubMed Cudmore S, Reckmann I, Michael W. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 1997;5:142–8.CrossRefPubMed
65.
go back to reference Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res. 1998;53:13–25.CrossRefPubMed Ulloa L, Serra R, Asenjo A, Villanueva N. Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res. 1998;53:13–25.CrossRefPubMed
66.
go back to reference Brown G, Rixon HWM, Steel J, McDonald TP, Pitt AR, Graham S, et al. Evidence for an association between heat shock protein 70 and the respiratory syncytial virus polymerase complex within lipid-raft membranes during virus infection. Virology. 2005;338:69–80.CrossRefPubMed Brown G, Rixon HWM, Steel J, McDonald TP, Pitt AR, Graham S, et al. Evidence for an association between heat shock protein 70 and the respiratory syncytial virus polymerase complex within lipid-raft membranes during virus infection. Virology. 2005;338:69–80.CrossRefPubMed
67.
go back to reference Pietropaolo RL, Compton T. Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol. 1997;71:9803–7.PubMedPubMedCentral Pietropaolo RL, Compton T. Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol. 1997;71:9803–7.PubMedPubMedCentral
68.
go back to reference Pietropaolo R, Compton T. Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J Gen Virol. 1999;80:1807–16.CrossRefPubMed Pietropaolo R, Compton T. Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J Gen Virol. 1999;80:1807–16.CrossRefPubMed
69.
go back to reference Ryzhova EV, Harrist AV, Harvey T, Gonza F. Annexin 2: a novel human immunodeficiency virus type 1 gag binding protein involved in replication in monocyte-derived macrophages. J Virol. 2006;80:2694–704.CrossRefPubMedCentralPubMed Ryzhova EV, Harrist AV, Harvey T, Gonza F. Annexin 2: a novel human immunodeficiency virus type 1 gag binding protein involved in replication in monocyte-derived macrophages. J Virol. 2006;80:2694–704.CrossRefPubMedCentralPubMed
70.
go back to reference Rai T, Mosoian A, Resh MD. Annexin 2 is not required for human immunodeficiency virus type 1 particle production but plays a cell type-dependent role in regulating infectivity. J Virol. 2010;84:9783–92.CrossRefPubMedCentralPubMed Rai T, Mosoian A, Resh MD. Annexin 2 is not required for human immunodeficiency virus type 1 particle production but plays a cell type-dependent role in regulating infectivity. J Virol. 2010;84:9783–92.CrossRefPubMedCentralPubMed
71.
go back to reference Moerdyk-Schauwecker M, Hwang S-I, Grdzelishvili VZ. Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J. 2009;6:166.CrossRefPubMedCentralPubMed Moerdyk-Schauwecker M, Hwang S-I, Grdzelishvili VZ. Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J. 2009;6:166.CrossRefPubMedCentralPubMed
72.
go back to reference Ott DE, Coren LV, Johnson DG, Kane BP, Sowder RC, Kim YD, et al. Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology. 2000;266:42–51.CrossRefPubMed Ott DE, Coren LV, Johnson DG, Kane BP, Sowder RC, Kim YD, et al. Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology. 2000;266:42–51.CrossRefPubMed
73.
go back to reference Schneider-Schaulies J, Dunster LM, Schwartz-Albiez R, Krohne G, Ter Meulen V. Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol. 1995;69:2248–56.PubMedPubMedCentral Schneider-Schaulies J, Dunster LM, Schwartz-Albiez R, Krohne G, Ter Meulen V. Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol. 1995;69:2248–56.PubMedPubMedCentral
74.
go back to reference Cseke G, Maginnis MS, Cox RG, Tollefson SJ, Podsiad AB, Wright DW, et al. Integrin αvβ1 promotes infection by human metapneumovirus. Proc Natl Acad Sci U S A. 2009;106:1566–71.CrossRefPubMedCentralPubMed Cseke G, Maginnis MS, Cox RG, Tollefson SJ, Podsiad AB, Wright DW, et al. Integrin αvβ1 promotes infection by human metapneumovirus. Proc Natl Acad Sci U S A. 2009;106:1566–71.CrossRefPubMedCentralPubMed
75.
go back to reference Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, et al. Proteins of purified Epstein – Barr virus. Proc Natl Acad Sci U S A. 2004;101:16286–91.CrossRefPubMedCentralPubMed Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, et al. Proteins of purified Epstein – Barr virus. Proc Natl Acad Sci U S A. 2004;101:16286–91.CrossRefPubMedCentralPubMed
76.
go back to reference Tremblay MJ, Fortin J-F, Cantin R. The acquisition of host-encoded proteins by nascent HIV-1. Immunol Today. 1998;19:346–51.CrossRefPubMed Tremblay MJ, Fortin J-F, Cantin R. The acquisition of host-encoded proteins by nascent HIV-1. Immunol Today. 1998;19:346–51.CrossRefPubMed
77.
go back to reference Chung C, Chen C, Ho M, Huang C. Vaccinia virus proteome: Identification of proteins in vaccinia virus intracellular mature virion particles. J Virol. 2006;80:2127–40.CrossRefPubMedCentralPubMed Chung C, Chen C, Ho M, Huang C. Vaccinia virus proteome: Identification of proteins in vaccinia virus intracellular mature virion particles. J Virol. 2006;80:2127–40.CrossRefPubMedCentralPubMed
Metadata
Title
Mass spectrometry-based investigation of measles and mumps virus proteome
Authors
Dora Sviben
Dubravko Forcic
Beata Halassy
Günter Allmaier
Martina Marchetti-Deschmann
Marija Brgles
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1073-9

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue