Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Low level expression of the Mitochondrial Antiviral Signaling protein (MAVS) associated with long-term nonprogression in SIV-infected rhesus macaques

Authors: Miaomiao Zhang, Zhuotao Fu, Jiantao Chen, Boqiang Zhu, Ye Cheng, Linchun Fu

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Abnormally increased immune activation is one of the main pathological features of acquired immunodeficiency syndrome (AIDS). This study aimed to determine whether long-term nonprogression (LTNP) suppresses the upregulation of immune activation and to elucidate the mechanisms whereby the LTNP state is maintained.

Methods

For this study we selected 4 rhesus macaques(RMs) infected with simian immunodeficiency virus (SIV) that were long-term nonprogressors (LTNP); for comparison we chose 4 healthy RMs that were seronegative for SIV (hereafter referred to as the Control group), and 4 progressing infection (Progressive group) SIV RMs. We observed these animals for 6 months without intervention and explored the immunological and pathological differences among the 3 groups. A series of immune activation and inflammation markers—such as C- C chemokine receptor type 5 (CCR5), beta 2- microglobulin (β2-MG), Human Leukocyte Antigen - antigen D Related (HLA-DR), CD38, the levels of microbial translocation (LPS -binding protein), and MAVS—and histological features were monitored during this period.

Results

Both SIV RNA and SIV DNA in the plasma and lymph nodes (LNs) of the LTNP group were at significantly lower levels than those of the Progressive group (P < 0.05). The CD4/CD8 ratio and CD4 cell count and proportion in the LTNP group were between those of the Progressive and Control groups (P < 0.05): that is, they were higher than in the Progressive group and lower than in the Control group. The LTNP macaques manifested slow progression and decreased immune activation and inflammation; they also had lower levels of CCR5, LPS-binding protein, and β2-MG than the Progressive RMs (P < 0.05). Activation of LTNP in both CD4+ and CD8+ T cells was significantly lower than in the Progressive group and closer to that in the Control group. The histological features of the LTNP macaques were also closer to those of the Control group, even though they had been infected with SIV 4 years earlier. These data point to low viral replication in the LTNP macaques but it is not static. The expression of MAVS in peripheral blood and LNs was lower in the LTNP group than that in the Progressive group (P < 0.01), and MAVS was positively correlated with SIV DNA in LNs (P < 0.05). This may reflect the low activation of T lymphocytes. It was speculated that MAVS may be the link between innate and acquired antiviral immunity in SIV infection.

Conclusions

The LTNP RMs in our study were in a relatively stable state of low activation and inflammation, some biological progression with no disease events. This may have been associated with their low levels of the mitochondrial antiviral signaling protein (MAVS).
Literature
2.
go back to reference Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy[J]. Immunity. 2007;27(3):406–16.CrossRef Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy[J]. Immunity. 2007;27(3):406–16.CrossRef
3.
go back to reference Pernas M, Casado C, Arcones C, et al. Low-replicating viruses and strong anti-viral immune response associated with prolonged disease control in a superinfected HIV-1 LTNP elite controller[J]. PLoS One. 2012;7(2):e31928.CrossRef Pernas M, Casado C, Arcones C, et al. Low-replicating viruses and strong anti-viral immune response associated with prolonged disease control in a superinfected HIV-1 LTNP elite controller[J]. PLoS One. 2012;7(2):e31928.CrossRef
4.
go back to reference Calugi G, Montella F, Favalli C, et al. Entire genome of a strain of human immunodeficiency virus type 1 with a deletion of nef that was recovered 20 years after primary infection: large pool of proviruses with deletions of env[J]. J Virol. 2006;80(23):11892–6.CrossRef Calugi G, Montella F, Favalli C, et al. Entire genome of a strain of human immunodeficiency virus type 1 with a deletion of nef that was recovered 20 years after primary infection: large pool of proviruses with deletions of env[J]. J Virol. 2006;80(23):11892–6.CrossRef
5.
go back to reference Alexander L, Weiskopf E, Greenough TC, et al. Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection[J]. J Virol. 2000;74(9):4361–76.CrossRef Alexander L, Weiskopf E, Greenough TC, et al. Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection[J]. J Virol. 2000;74(9):4361–76.CrossRef
6.
go back to reference Gonzalez E, Bamshad M, Sato N, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes[J]. Proc Natl Acad Sci U S A. 1999;96(21):12004–9.CrossRef Gonzalez E, Bamshad M, Sato N, et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes[J]. Proc Natl Acad Sci U S A. 1999;96(21):12004–9.CrossRef
7.
go back to reference U U. HLA B*5701 status,disease progression,and response to antiretroviral therapy[J]. AIDS. 2013;27(16):2587–92.CrossRef U U. HLA B*5701 status,disease progression,and response to antiretroviral therapy[J]. AIDS. 2013;27(16):2587–92.CrossRef
8.
go back to reference Ferre AL, Hunt PW, McConnell DH, et al. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses[J]. J Virol. 2010;84(21):11020–9.CrossRef Ferre AL, Hunt PW, McConnell DH, et al. HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses[J]. J Virol. 2010;84(21):11020–9.CrossRef
9.
go back to reference Bailey JR, Lassen KG, Yang HC, et al. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy[J]. J Virol. 2006;80(10):4758–70.CrossRef Bailey JR, Lassen KG, Yang HC, et al. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy[J]. J Virol. 2006;80(10):4758–70.CrossRef
10.
go back to reference Lambotte O, Ferrari G, Moog C, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers [J]. AIDS. 2009;23(8):897–906.CrossRef Lambotte O, Ferrari G, Moog C, et al. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers [J]. AIDS. 2009;23(8):897–906.CrossRef
11.
go back to reference Mahalanabis M, Jayaraman P, Miura T, et al. Continuous viral escape and selection by autologous neutralizing antibodies in drug-naive human immunodeficiency virus controllers[J]. J Virol. 2009;83(2):662–72.CrossRef Mahalanabis M, Jayaraman P, Miura T, et al. Continuous viral escape and selection by autologous neutralizing antibodies in drug-naive human immunodeficiency virus controllers[J]. J Virol. 2009;83(2):662–72.CrossRef
12.
go back to reference Kawai T, Takahashi K, Sato S, et al. IPS-1,an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction[J]. Nat Immunol. 2005;6(10):981–8.CrossRef Kawai T, Takahashi K, Sato S, et al. IPS-1,an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction[J]. Nat Immunol. 2005;6(10):981–8.CrossRef
13.
go back to reference Xu LG, Wang YY, Han KJ, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling[J]. Mol Cell. 2005;19(6):727–40.CrossRef Xu LG, Wang YY, Han KJ, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling[J]. Mol Cell. 2005;19(6):727–40.CrossRef
14.
go back to reference Olagnier D, Scholte FE, Chiang C, et al. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response[J]. J Virol. 2014;88(8):4180–94.CrossRef Olagnier D, Scholte FE, Chiang C, et al. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response[J]. J Virol. 2014;88(8):4180–94.CrossRef
15.
go back to reference Brown CR, Czapiga M, Kabat J, et al. Unique pathology in simian immunodeficiency virus-infected rapid progressor macaques is consistent with a pathogenesis distinct from that of classical AIDS[J]. J Virol. 2007;81(11):5594–606.CrossRef Brown CR, Czapiga M, Kabat J, et al. Unique pathology in simian immunodeficiency virus-infected rapid progressor macaques is consistent with a pathogenesis distinct from that of classical AIDS[J]. J Virol. 2007;81(11):5594–606.CrossRef
16.
go back to reference Liovat A-S, Rey-Cuillé M-A, Lécuroux C, et al. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection[J]. PLoS One. 2012;7(10):e46143.CrossRef Liovat A-S, Rey-Cuillé M-A, Lécuroux C, et al. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection[J]. PLoS One. 2012;7(10):e46143.CrossRef
17.
go back to reference Reimann KA, Parker RA, Seaman MS, et al. Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses[J]. J Virol. 2005;79(14):8878–85.CrossRef Reimann KA, Parker RA, Seaman MS, et al. Pathogenicity of simian-human immunodeficiency virus SHIV-89.6P and SIVmac is attenuated in cynomolgus macaques and associated with early T-lymphocyte responses[J]. J Virol. 2005;79(14):8878–85.CrossRef
18.
go back to reference Chen S, Lai C, Wu X, et al. Variability of bio-clinical parameters in chinese-origin rhesus macaques infected with simian immunodeficiency virus a nonhuman primate aids model[J]. PloS One. 2011;6(8):e23177.CrossRef Chen S, Lai C, Wu X, et al. Variability of bio-clinical parameters in chinese-origin rhesus macaques infected with simian immunodeficiency virus a nonhuman primate aids model[J]. PloS One. 2011;6(8):e23177.CrossRef
19.
go back to reference He JY, Cheng HJ, Wang YF, et al. Development of a real-time quantitative reverse transcriptase PCR assay for detection of the friend leukemia virus load in murine plasma[J]. J Virol Methods. 2008;147(2):345–50.CrossRef He JY, Cheng HJ, Wang YF, et al. Development of a real-time quantitative reverse transcriptase PCR assay for detection of the friend leukemia virus load in murine plasma[J]. J Virol Methods. 2008;147(2):345–50.CrossRef
20.
go back to reference Ahn K, Huh JW, Park SJ, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues[J]. BMC Mol Biol. 2008;9:78.CrossRef Ahn K, Huh JW, Park SJ, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues[J]. BMC Mol Biol. 2008;9:78.CrossRef
21.
go back to reference Hiscott J, Lin R, Nakhaei P, et al. Master CARD: a priceless link to innate immunity[J]. Trends Mol Med. 2006;12(2):53–6.CrossRef Hiscott J, Lin R, Nakhaei P, et al. Master CARD: a priceless link to innate immunity[J]. Trends Mol Med. 2006;12(2):53–6.CrossRef
22.
go back to reference Kristoff J, Haret-Richter G, Ma D, et al. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication[J]. J Clin Invest. 2014;124(6):2802–6.CrossRef Kristoff J, Haret-Richter G, Ma D, et al. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication[J]. J Clin Invest. 2014;124(6):2802–6.CrossRef
23.
go back to reference Lichtfuss GF, Hoy J, Rajasuriar R, et al. Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection[J]. Biomark Med. 2011;5(2):171–86.CrossRef Lichtfuss GF, Hoy J, Rajasuriar R, et al. Biomarkers of immune dysfunction following combination antiretroviral therapy for HIV infection[J]. Biomark Med. 2011;5(2):171–86.CrossRef
24.
go back to reference Leinert C, Stahl-Hennig C, Ecker A, et al. Microbial translocation in simian immunodeficiency virus (SIV)-infected rhesus monkeys (Macaca mulatta)[J]. J Med Primatol. 2010;39(4):243–51.CrossRef Leinert C, Stahl-Hennig C, Ecker A, et al. Microbial translocation in simian immunodeficiency virus (SIV)-infected rhesus monkeys (Macaca mulatta)[J]. J Med Primatol. 2010;39(4):243–51.CrossRef
25.
go back to reference Mocroft A, Johnson MA, Sabin CA, et al. The relationship between beta 2-microglobulin, CD4 lymphocyte coun, AIDS and death in HIV-positive individuals [J]. Epidemiol Infect. 1997;118(3):259–66.CrossRef Mocroft A, Johnson MA, Sabin CA, et al. The relationship between beta 2-microglobulin, CD4 lymphocyte coun, AIDS and death in HIV-positive individuals [J]. Epidemiol Infect. 1997;118(3):259–66.CrossRef
26.
go back to reference Krämer A, Biggar RJ, Goedert JJ. Markers of Risk in HIV-1[J]. New England J Med. 1990;322(26):1886. Krämer A, Biggar RJ, Goedert JJ. Markers of Risk in HIV-1[J]. New England J Med. 1990;322(26):1886.
27.
go back to reference Silvestri G, Paiardini M, Pandrea I, et al. Understanding the benign nature of SIV infection in natural hosts[J]. J Clin Invest. 2007;117(11):3148–54.CrossRef Silvestri G, Paiardini M, Pandrea I, et al. Understanding the benign nature of SIV infection in natural hosts[J]. J Clin Invest. 2007;117(11):3148–54.CrossRef
28.
go back to reference Grossman Z, Meier-Schellersheim M, Paul WE, et al. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys [J]. Nat Med. 2006;12(3):289–95.CrossRef Grossman Z, Meier-Schellersheim M, Paul WE, et al. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys [J]. Nat Med. 2006;12(3):289–95.CrossRef
29.
go back to reference Choe H, Farzan M, Sun Y, et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates[J]. Cell. 1996;85(7):1135–48.CrossRef Choe H, Farzan M, Sun Y, et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates[J]. Cell. 1996;85(7):1135–48.CrossRef
30.
go back to reference Baribaud F, Doms RW. The impact of chemokine receptor conformational heterogeneity on HIV infection[J]. Cell Mol Biol. 2001;47(4):653–60.PubMed Baribaud F, Doms RW. The impact of chemokine receptor conformational heterogeneity on HIV infection[J]. Cell Mol Biol. 2001;47(4):653–60.PubMed
31.
go back to reference Joshi A, Nyakeriga AM, Ravi R, et al. HIV ENV glycoprotein-mediated bystander apoptosis depends on expression of the CCR5 co-receptor at the cell surface and ENV fusogenic activity[J]. J Biol Chem. 2011;286(42):36404–13.CrossRef Joshi A, Nyakeriga AM, Ravi R, et al. HIV ENV glycoprotein-mediated bystander apoptosis depends on expression of the CCR5 co-receptor at the cell surface and ENV fusogenic activity[J]. J Biol Chem. 2011;286(42):36404–13.CrossRef
32.
go back to reference Garg H, Lee RT , Maurer-Stroh S, et al. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc[J]. Virology. 2016;6(493):86–99.CrossRef Garg H, Lee RT , Maurer-Stroh S, et al. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc[J]. Virology. 2016;6(493):86–99.CrossRef
33.
go back to reference Scoggins RM, Taylor JR, Patrie J, et al. Pathogenesis of primary R5 human immunodeficiency virus type 1 clones in SCID-hu mice[J]. J Virol. 2000;74(7):3205–16.CrossRef Scoggins RM, Taylor JR, Patrie J, et al. Pathogenesis of primary R5 human immunodeficiency virus type 1 clones in SCID-hu mice[J]. J Virol. 2000;74(7):3205–16.CrossRef
34.
go back to reference Joshi A, Punke EB, Sedano M, et al. CCR5 promoter activity correlates with HIV disease progression by regulating CCR5 cell surface expression and CD4 T cell apoptosis [J]. Sci Rep. 2017;7(1):232.CrossRef Joshi A, Punke EB, Sedano M, et al. CCR5 promoter activity correlates with HIV disease progression by regulating CCR5 cell surface expression and CD4 T cell apoptosis [J]. Sci Rep. 2017;7(1):232.CrossRef
35.
go back to reference Jaumdally SZ, Picton A, Tiemessen CT, et al. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships [J]. Immunology. 2017;151(4):464–73.CrossRef Jaumdally SZ, Picton A, Tiemessen CT, et al. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships [J]. Immunology. 2017;151(4):464–73.CrossRef
36.
go back to reference Barassi C, Lazzarin A, Lopalco L. CCR5-specific mucosal IgA in saliva and genital fluids of HIV-exposed seronegative subjects[J]. Blood. 2004;104(7):2205–6.CrossRef Barassi C, Lazzarin A, Lopalco L. CCR5-specific mucosal IgA in saliva and genital fluids of HIV-exposed seronegative subjects[J]. Blood. 2004;104(7):2205–6.CrossRef
37.
go back to reference Pastori C, Weiser B, Barassi C, et al. Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression[J]. Blood. 2006;107(12):4825–33.CrossRef Pastori C, Weiser B, Barassi C, et al. Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression[J]. Blood. 2006;107(12):4825–33.CrossRef
38.
go back to reference Schardijn GH, Statius van Eps LW. Beta 2-microglobulin: its significance in the evaluation of renal function[J]. Kidney Int. 1987;32:635–41.CrossRef Schardijn GH, Statius van Eps LW. Beta 2-microglobulin: its significance in the evaluation of renal function[J]. Kidney Int. 1987;32:635–41.CrossRef
39.
go back to reference Jacobson MA, Abrams DI, Volberding PA, et al. Serum beta 2-microglobulin decreases in patients with AIDS or ARC treated with azidothymidine[J]. J Infect Dis. 1989;159:1029–36.CrossRef Jacobson MA, Abrams DI, Volberding PA, et al. Serum beta 2-microglobulin decreases in patients with AIDS or ARC treated with azidothymidine[J]. J Infect Dis. 1989;159:1029–36.CrossRef
40.
go back to reference Zeller JM, McCain NL, Swanson B. Immunological and virological markers of HIV-disease progression[J]. J Assoc Nurses AIDS Care. 1996;7:15–27.CrossRef Zeller JM, McCain NL, Swanson B. Immunological and virological markers of HIV-disease progression[J]. J Assoc Nurses AIDS Care. 1996;7:15–27.CrossRef
41.
go back to reference Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? [J]. Nat Immunol. 2006;7(3):235–9.CrossRef Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? [J]. Nat Immunol. 2006;7(3):235–9.CrossRef
42.
go back to reference Veazey RS, DeMaria M, Chalifoux LV, et al. Gastrointestinal tract as a major site of CD4+T cell depletion and viral replication in SIV infection[J]. Science. 1998;280(5362):427–31.CrossRef Veazey RS, DeMaria M, Chalifoux LV, et al. Gastrointestinal tract as a major site of CD4+T cell depletion and viral replication in SIV infection[J]. Science. 1998;280(5362):427–31.CrossRef
43.
go back to reference Mattapallil JJ, Douek DC, Hill B, et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection[J]. Nature. 2005;434(7037):1093–7.CrossRef Mattapallil JJ, Douek DC, Hill B, et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection[J]. Nature. 2005;434(7037):1093–7.CrossRef
44.
go back to reference Picker LJ, Hagen SI, Lum R, et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection [J]. J Exp Med. 2004;200(10):1299–314.CrossRef Picker LJ, Hagen SI, Lum R, et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection [J]. J Exp Med. 2004;200(10):1299–314.CrossRef
45.
go back to reference Takeda K, Kaisho T, Akira S. Toll-like receptors [J]. Annu Rev Immunol. 2003;21:335–76.CrossRef Takeda K, Kaisho T, Akira S. Toll-like receptors [J]. Annu Rev Immunol. 2003;21:335–76.CrossRef
46.
go back to reference Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection [J]. Nat Med. 2006;12(12):1365–71.CrossRef Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection [J]. Nat Med. 2006;12(12):1365–71.CrossRef
47.
go back to reference Hofer U, Speck RF. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection[J]. Semin Immunopathol. 2009;31(2):257–66.CrossRef Hofer U, Speck RF. Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection[J]. Semin Immunopathol. 2009;31(2):257–66.CrossRef
48.
go back to reference Douek D. HIV disease progression:immune activation, microbes,and a leaky gut[J]. Top HIV Med. 2007;15(4):114–7.PubMed Douek D. HIV disease progression:immune activation, microbes,and a leaky gut[J]. Top HIV Med. 2007;15(4):114–7.PubMed
49.
go back to reference Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors[J]. Immunity. 2011;34(5):680–92.CrossRef Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors[J]. Immunity. 2011;34(5):680–92.CrossRef
50.
go back to reference Gringhuis SI, Hertoghs N, Kaptein TM, et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3[J]. Nat Immunol. 2017;18(2):225–35.CrossRef Gringhuis SI, Hertoghs N, Kaptein TM, et al. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3[J]. Nat Immunol. 2017;18(2):225–35.CrossRef
51.
go back to reference Gupta S, Termini JM, Issac B, et al. Constitutively active MAVS inhibits HIV-1 replication via type I interferon secretion and induction of HIV-1 restriction factors[J]. PLoS One. 2016;11(2):e0148929.CrossRef Gupta S, Termini JM, Issac B, et al. Constitutively active MAVS inhibits HIV-1 replication via type I interferon secretion and induction of HIV-1 restriction factors[J]. PLoS One. 2016;11(2):e0148929.CrossRef
52.
go back to reference Solis M, Nakhaei P, Jalalirad M, et al. RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I[J]. J Virol. 2011;85(3):1224–36.CrossRef Solis M, Nakhaei P, Jalalirad M, et al. RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I[J]. J Virol. 2011;85(3):1224–36.CrossRef
53.
go back to reference Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its inhibition by viral proteins[J]. PLoS One. 2009;4(5):e5466.CrossRef Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its inhibition by viral proteins[J]. PLoS One. 2009;4(5):e5466.CrossRef
54.
go back to reference Fang R, Jiang Q, Zhou X, et al. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner[J]. PLoS Pathog. 2017;13(11):e1006720.CrossRef Fang R, Jiang Q, Zhou X, et al. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner[J]. PLoS Pathog. 2017;13(11):e1006720.CrossRef
55.
go back to reference Zhao Y, Sun X, Nie X, et al. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production[J]. PLoS Pathog. 2012;8(12):e1003086.CrossRef Zhao Y, Sun X, Nie X, et al. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production[J]. PLoS Pathog. 2012;8(12):e1003086.CrossRef
56.
go back to reference Li XD, Chiu YH, Ismail AS, et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis[J]. PNAS. 2011;108(42):17390–5.CrossRef Li XD, Chiu YH, Ismail AS, et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis[J]. PNAS. 2011;108(42):17390–5.CrossRef
57.
go back to reference Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling[J]. Nat Rev Immunol. 2008;8:911–22.CrossRef Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling[J]. Nat Rev Immunol. 2008;8:911–22.CrossRef
58.
go back to reference Lin R, Lacoste J, Nakhaei P, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage[J]. J. Virol. 2006;80:6072–83.CrossRef Lin R, Lacoste J, Nakhaei P, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage[J]. J. Virol. 2006;80:6072–83.CrossRef
59.
go back to reference Parera M, Martrus G, Franco S, et al. Canine hepacivirus NS3 serine protease can cleave the human adaptor proteins MAVS and TRIF[J]. PLoS One. 2012;7(8):e42481.CrossRef Parera M, Martrus G, Franco S, et al. Canine hepacivirus NS3 serine protease can cleave the human adaptor proteins MAVS and TRIF[J]. PLoS One. 2012;7(8):e42481.CrossRef
60.
go back to reference You F, Sun H, Zhou X, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4[J]. Nat Immunol. 2009;10(12):1300–8.CrossRef You F, Sun H, Zhou X, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4[J]. Nat Immunol. 2009;10(12):1300–8.CrossRef
Metadata
Title
Low level expression of the Mitochondrial Antiviral Signaling protein (MAVS) associated with long-term nonprogression in SIV-infected rhesus macaques
Authors
Miaomiao Zhang
Zhuotao Fu
Jiantao Chen
Boqiang Zhu
Ye Cheng
Linchun Fu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1069-5

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue