Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Survey for major viruses in commercial Vitis vinifera wine grapes in Ontario

Authors: Huogen Xiao, Mehdi Shabanian, Clayton Moore, Caihong Li, Baozhong Meng

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

In recent years, the Ontario grape and wine industry has experienced outbreaks of viral diseases across the province. Little is known about the prevalence of viruses and viral diseases in Ontario. Since 2015, we have conducted large-scale surveys for major viruses in commercial wine grapes in order to obtain a comprehensive understanding of the prevalence and severity of viral diseases in Ontario.

Methods

A total of 657 composite leaf samples representing 3285 vines collected from 137 vine blocks of 33 vineyards from three appellations: Niagara Peninsula, Lake Erie North Shore and Prince Edward County. These samples covered six major red cultivars and five major white grape cultivars. Using a multiplex RT-PCR format, we tested these samples for 17 viruses including those involved in all major viral diseases of the grapevine, such as five grapevine leafroll-associated viruses (GLRaV-1, 2, 3, 4, 7), grapevine red blotch virus (GRBV), grapevine Pinot gris virus (GPGV), grapevine rupestris stem sitting-associated virus (GRSPaV), grapevine virus A (GVA), grapevine virus B (GVB), grapevine fleck virus (GFkV), arabis mosaic virus (ArMV), tomato ringspot virus (ToRSV), trapevine fanleaf virus (GFLV), among others.

Results

Fourteen of the 17 viruses were detected from these samples and the predominant viruses are GRSPaV, GLRaV-3, GFkV, GPGV and GRBaV with an incidence of 84.0, 47.9, 21.8, 21.6 and 18.3%, respectively. As expected, mixed infections with multiple viruses are common. 95.6% of the samples included in the survey were infected with at least one virus; 67% of the samples with 2–4 viruses and 4.7% of the samples with 5–6 viruses. The major grape cultivars all tested positive for these major viruses. The results also suggested that the use of infected planting material may have been one of the chief factors responsible for the recent outbreaks of viral diseases across the province.

Conclusions

This is the first such comprehensive survey for grapevine viruses in Ontario and one of the most extensive surveys ever conducted in Canada. The recent outbreaks of viral diseases in Ontario vineyards were likely caused by GLRaV-3, GRBV and GPGV. Findings from this survey provides a baseline for the grape and wine industry in developing strategies for managing grapevine viral diseases in Ontario vineyards.
Literature
1.
go back to reference Mannini F, Digiaro M. The effects of viruses and viral diseases on grapes and wine. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 453–82.CrossRef Mannini F, Digiaro M. The effects of viruses and viral diseases on grapes and wine. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 453–82.CrossRef
2.
go back to reference Charles JG, Cohen D, Walker JTS, Forgie SA, Bell VA, Breen KC. A review of the ecology of grapevine leafroll associated virus type 3 (GLRaV-3). N Z Plant Prot. 2006;59:330–7. Charles JG, Cohen D, Walker JTS, Forgie SA, Bell VA, Breen KC. A review of the ecology of grapevine leafroll associated virus type 3 (GLRaV-3). N Z Plant Prot. 2006;59:330–7.
3.
go back to reference Credi R, Babini AR. Effects of virus and virus-like infections on growth, yield and fruit quality of Albana and Trebbiano Romagnolo grapevines. Am J Enol Vitic. 1997;48:7–12. Credi R, Babini AR. Effects of virus and virus-like infections on growth, yield and fruit quality of Albana and Trebbiano Romagnolo grapevines. Am J Enol Vitic. 1997;48:7–12.
4.
go back to reference Komar V, Vigne E, Demangeat G, Lemaire O, Fuchs M. Comparative performance analysis of virus-infected Vitis vinifera cv. Savagnin rose grafted onto three rootstocks. Am J Enol Vitic. 2010;61:68–73. Komar V, Vigne E, Demangeat G, Lemaire O, Fuchs M. Comparative performance analysis of virus-infected Vitis vinifera cv. Savagnin rose grafted onto three rootstocks. Am J Enol Vitic. 2010;61:68–73.
5.
go back to reference Ricketts KD, Gomez MI, Atallah SS, Fuchs M, Martinson TE, Battany MC, Bettiga LJ, Cooper ML, Verdegaal PS, Smith RJ. Reducing the economic impact of grapevine leafroll disease in California: identifying optimal disease management strategies. Am J Enol Vitic. 2015;66:138–47.CrossRef Ricketts KD, Gomez MI, Atallah SS, Fuchs M, Martinson TE, Battany MC, Bettiga LJ, Cooper ML, Verdegaal PS, Smith RJ. Reducing the economic impact of grapevine leafroll disease in California: identifying optimal disease management strategies. Am J Enol Vitic. 2015;66:138–47.CrossRef
6.
go back to reference Shady SA, Gόmez MI, Fuchs MF, Mortison TE. Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. Am J of Enology Vitic. 2012;63:73–9.CrossRef Shady SA, Gόmez MI, Fuchs MF, Mortison TE. Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. Am J of Enology Vitic. 2012;63:73–9.CrossRef
7.
go back to reference Martelli GP. An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 31–46.CrossRef Martelli GP. An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 31–46.CrossRef
8.
go back to reference Al Rwahnih M, Dave A, Anderson M, Rowhani A, Uyemoto JK, Sudarshana MR. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology. 2013;103:1069–76.CrossRefPubMed Al Rwahnih M, Dave A, Anderson M, Rowhani A, Uyemoto JK, Sudarshana MR. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology. 2013;103:1069–76.CrossRefPubMed
10.
go back to reference Xiao H, Kim W-S, Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol J. 2015;12:171.CrossRefPubMedPubMedCentral Xiao H, Kim W-S, Meng B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol J. 2015;12:171.CrossRefPubMedPubMedCentral
12.
go back to reference Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv. Pinot gris Virus Res. 2012;163:262–8.CrossRefPubMed Giampetruzzi A, Roumi V, Roberto R, Malossini U, Yoshikawa N, La Notte P, Terlizzi F, Credi R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in cv. Pinot gris Virus Res. 2012;163:262–8.CrossRefPubMed
13.
go back to reference Saldarelli P, Gualandri V, Malossini U, Glasa M. Grapevine Pinot gris virus. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 351–64.CrossRef Saldarelli P, Gualandri V, Malossini U, Glasa M. Grapevine Pinot gris virus. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 351–64.CrossRef
14.
go back to reference Poojari S, Lowery T, Rott M, Schmidt AM, Úrbez-Torres JR. First report of grapevine pinot gris virus in British Columbia. Canada Plant Dis. 2016;100:1513.CrossRef Poojari S, Lowery T, Rott M, Schmidt AM, Úrbez-Torres JR. First report of grapevine pinot gris virus in British Columbia. Canada Plant Dis. 2016;100:1513.CrossRef
16.
go back to reference MacKenzie DJ, Johnson RC, Warner C. Incidence of four important viral pathogens in Canadian vineyards. Plant Dis. 1996;80:955–8.CrossRef MacKenzie DJ, Johnson RC, Warner C. Incidence of four important viral pathogens in Canadian vineyards. Plant Dis. 1996;80:955–8.CrossRef
18.
go back to reference Poojari S, Boulé J, DeLury N, Lowery DT, Rott M, Schmidt AM, Úrbez-Torres JR. Epidemiology and genetic diversity of grapevine leafroll-associated viruses in British Columbia. Plant Dis. 2017;101:2088–97.CrossRef Poojari S, Boulé J, DeLury N, Lowery DT, Rott M, Schmidt AM, Úrbez-Torres JR. Epidemiology and genetic diversity of grapevine leafroll-associated viruses in British Columbia. Plant Dis. 2017;101:2088–97.CrossRef
19.
go back to reference Fuchs M, Marsella-Herrick P, Loeb GM, Martinson TE, Hoch HC. Diversity of ampeloviruses in mealybug and soft scale vectors and in grapevine hosts from leafroll-affected vineyards. Phytopathology. 2009;99:1177–84.CrossRefPubMed Fuchs M, Marsella-Herrick P, Loeb GM, Martinson TE, Hoch HC. Diversity of ampeloviruses in mealybug and soft scale vectors and in grapevine hosts from leafroll-affected vineyards. Phytopathology. 2009;99:1177–84.CrossRefPubMed
20.
go back to reference Le Maguet J, Beuve M, Herrbach E, Lemaire O. Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology. 2012;102:717–23.CrossRefPubMed Le Maguet J, Beuve M, Herrbach E, Lemaire O. Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. Phytopathology. 2012;102:717–23.CrossRefPubMed
21.
go back to reference Mahfoudhi N, Digiaro M, Dhouibi MH. Transmission of grapevine leafroll viruses by Planococcus ficus (Hemiptera: Pseudococcidae) and Ceroplastes rusci (Hemiptera: Coccidae). Plant Dis. 2009;93:999–1002.CrossRef Mahfoudhi N, Digiaro M, Dhouibi MH. Transmission of grapevine leafroll viruses by Planococcus ficus (Hemiptera: Pseudococcidae) and Ceroplastes rusci (Hemiptera: Coccidae). Plant Dis. 2009;93:999–1002.CrossRef
22.
go back to reference Maree HJ, Almeida RP, Bester R, Chooi K, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AE, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger J. Grapevine leafroll-associated virus 3. Front Microbiol. 2013;4:82.CrossRefPubMedPubMedCentral Maree HJ, Almeida RP, Bester R, Chooi K, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AE, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger J. Grapevine leafroll-associated virus 3. Front Microbiol. 2013;4:82.CrossRefPubMedPubMedCentral
23.
go back to reference Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP. Grapevine leafroll: a complex viral disease affecting a high-value fruit crop. Plant Dis. 2014;98:1172–85.CrossRef Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP. Grapevine leafroll: a complex viral disease affecting a high-value fruit crop. Plant Dis. 2014;98:1172–85.CrossRef
24.
go back to reference Tsai C-W, Rowhani A, Golino DA, Daane KM, Almeida RPP. Mealybug transmission of grapevine leafroll viruses: an analysis of virus-vector specificity. Phytopathology. 2010;100:830–4.CrossRefPubMed Tsai C-W, Rowhani A, Golino DA, Daane KM, Almeida RPP. Mealybug transmission of grapevine leafroll viruses: an analysis of virus-vector specificity. Phytopathology. 2010;100:830–4.CrossRefPubMed
25.
go back to reference Bahder B, Zalom F, Jayanth M, Sudarshana S. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (say) as a vector of grapevine red blotch-associated virus. Phytopathology. 2016;106:1223–30.CrossRefPubMed Bahder B, Zalom F, Jayanth M, Sudarshana S. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (say) as a vector of grapevine red blotch-associated virus. Phytopathology. 2016;106:1223–30.CrossRefPubMed
26.
go back to reference Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C, Raiola A, Zanotelli L, Valenzano D, Giampetruzzi A, Morelli M, Ratti C, Causin R, Gualandri V. Transmission of grapevine pinot gris virus by Colomerus vitis (Acari: Eriophydae) to grapevine. Arch Virol. 2016; https://doi.org/10.1007/s00705-016-2935-3. Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C, Raiola A, Zanotelli L, Valenzano D, Giampetruzzi A, Morelli M, Ratti C, Causin R, Gualandri V. Transmission of grapevine pinot gris virus by Colomerus vitis (Acari: Eriophydae) to grapevine. Arch Virol. 2016; https://​doi.​org/​10.​1007/​s00705-016-2935-3.
27.
go back to reference Meng B, Rowhani A. Grapevine rupestris stem pitting-associated virus. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 257–88.CrossRef Meng B, Rowhani A. Grapevine rupestris stem pitting-associated virus. In: Meng B, Martelli G, Golino D, Fuchs M, editors. Grapevine viruses: molecular biology, diagnostics and management. Cham: Springer; 2017. p. 257–88.CrossRef
28.
go back to reference Meng B, Pang SZ, Forsline PL, McFerson JR, Gonsalves D. Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. J Gen Virol. 1998;79:2059–69.CrossRefPubMed Meng B, Pang SZ, Forsline PL, McFerson JR, Gonsalves D. Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. J Gen Virol. 1998;79:2059–69.CrossRefPubMed
29.
go back to reference Meng B, Johnson R, Peressini S, Forsline PL, Gonsalves D. Rupestris stem pitting associated virus-1 is consistently detected in rupestris stem pitting-infected grapevines. Eur J Plant Pathol. 1999;105:191–9.CrossRef Meng B, Johnson R, Peressini S, Forsline PL, Gonsalves D. Rupestris stem pitting associated virus-1 is consistently detected in rupestris stem pitting-infected grapevines. Eur J Plant Pathol. 1999;105:191–9.CrossRef
30.
go back to reference Zhang YP, Uyemoto JK, Golino DA, Rowhani A. Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology. 1998;88:1231–7.CrossRefPubMed Zhang YP, Uyemoto JK, Golino DA, Rowhani A. Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology. 1998;88:1231–7.CrossRefPubMed
31.
go back to reference Bouyahia H, Boscia D, Savino V, La Notte P, Pirolo C, Castellano MA, Minafra A, Martelli GP. Grapevine rupestris stem pitting-associated virus is linked with grapevine vein necrosis. Vitis. 2005;44:133–7. Bouyahia H, Boscia D, Savino V, La Notte P, Pirolo C, Castellano MA, Minafra A, Martelli GP. Grapevine rupestris stem pitting-associated virus is linked with grapevine vein necrosis. Vitis. 2005;44:133–7.
32.
go back to reference Reynolds AG, Lanterman WW, Wardle DA. Yield and berry composition of five Vitis cultivars as affected by rupestris stem pitting virus. Am J Enology Vitic. 1997;48:449–58. Reynolds AG, Lanterman WW, Wardle DA. Yield and berry composition of five Vitis cultivars as affected by rupestris stem pitting virus. Am J Enology Vitic. 1997;48:449–58.
33.
go back to reference Gambino G, Cuozzo D, Fasoli M, Pagliarani C, Vitali M, Boccacci P, Pezzotti M, Mannini F. Co-evolution between grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. J Exp Bot. 2012;63:5919–33.CrossRefPubMed Gambino G, Cuozzo D, Fasoli M, Pagliarani C, Vitali M, Boccacci P, Pezzotti M, Mannini F. Co-evolution between grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. J Exp Bot. 2012;63:5919–33.CrossRefPubMed
34.
go back to reference Pantaleo V, Vitali M, Boccacci P, Miozzi L, Cuozzo D, Chitarra W, Mannini F, Lovisolo C, Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci Rep. 2016;6:20167.CrossRefPubMedPubMedCentral Pantaleo V, Vitali M, Boccacci P, Miozzi L, Cuozzo D, Chitarra W, Mannini F, Lovisolo C, Gambino G. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress. Sci Rep. 2016;6:20167.CrossRefPubMedPubMedCentral
35.
go back to reference Habili N, Farrokhi N, Lima MF, Nicholas P, Randles JW. Distribution of Rupestris stem pitting-associated virus variants in two Australian vineyards showing different symptoms. Ann Appl Biol. 2006;148:91–6.CrossRef Habili N, Farrokhi N, Lima MF, Nicholas P, Randles JW. Distribution of Rupestris stem pitting-associated virus variants in two Australian vineyards showing different symptoms. Ann Appl Biol. 2006;148:91–6.CrossRef
36.
go back to reference Lima MF, Alkowni R, Uyemoto JK, Golino D, Osman F, Rowhani A. Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines. Arch Virol. 2006;151:1889–94.CrossRefPubMed Lima MF, Alkowni R, Uyemoto JK, Golino D, Osman F, Rowhani A. Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines. Arch Virol. 2006;151:1889–94.CrossRefPubMed
37.
go back to reference Lima MF, Alkowni R, Uyemoto JK, Rowhani A. Genomic study and detection of a new variant of grapevine rupestris stem pitting-associated virus in declining California pinot noir grapevines. J Plant Pathol. 2009;91:155–62. Lima MF, Alkowni R, Uyemoto JK, Rowhani A. Genomic study and detection of a new variant of grapevine rupestris stem pitting-associated virus in declining California pinot noir grapevines. J Plant Pathol. 2009;91:155–62.
38.
go back to reference Martelli GP. Directory of virus and virus-like diseases of the grapevine and their agents. J Plant Pathol. 2014;96(1 Supplement):136. Martelli GP. Directory of virus and virus-like diseases of the grapevine and their agents. J Plant Pathol. 2014;96(1 Supplement):136.
Metadata
Title
Survey for major viruses in commercial Vitis vinifera wine grapes in Ontario
Authors
Huogen Xiao
Mehdi Shabanian
Clayton Moore
Caihong Li
Baozhong Meng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1036-1

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue