Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

The polymorphisms of LCR, E6, and E7 of HPV-58 isolates in Yunnan, Southwest China

Authors: Juemin Xi, Junying Chen, Miaoling Xu, Hongying Yang, Songjiao Wen, Yue Pan, Xiaodan Wang, Chao Ye, Lijuan Qiu, Qiangming Sun

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Backgroud

Variations in HPV LCR/E6/E7 have been shown to be associated with the viral persistence and cervical cancer development. So far, there are few reports about the polymorphisms of the HPV-58 LCR/E6/E7 sequences in Southwest China. This study aims to characterize the gene polymorphisms of the HPV-58 LCR/E6/E7 sequences in women of Southwest China, and assess the effects of variations on the immune recognition of viral E6 and E7 antigens.

Methods

Twelve LCR/E6/E7 of the HPV-58 isolates were amplified and sequenced. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED v3.3. The selection pressure acting on the HPV-58 E6 and E7 coding regions was estimated by Bayes empirical Bayes analysis of PAML 4.8. Meanwhile, the MHC class-I and II binding peptides were predicted by the ProPred-I server and ProPred server. The transcription factor binding sites in the HPV-58 LCR were analyzed using the JASPAR database.

Results

Twenty nine SNPs (20 in the LCR, 3 in the E6, 6 in the E7) were identified at 27 nucleotide sites across the HPV-58 LCR/E6/E7. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. The combinations of all the SNPs resulted in 11 unique sequences, which were clustered into the A lineage (7 belong to A1, 2 belong to A2, and 2 belong to A3). An insertion (TGTCAGTTTCCT) was found between the nucleotide sites 7280 and 7281 in 2 variants, and a deletion (TTTAT) was found between 7429 and 7433 in 1 variant. The most common non-synonymous substitution V77A in the E7 was observed in the sequences encoding the α-helix. 63G in the E7 was determined to be the only one positively selected site in the HPV-58 E6/E7 sequences. Six non-synonymous amino acid substitutions (including S71F and K93 N in the E6, and T20I, G41R, G63S/D, and V77A in the E7) were affecting multiple putative epitopes for both CD4+ and CD8+ T-cells. In the LCR, C7265G and C7266T were the most variable sites and were the potential binding sites for the transcription factor SOX10.

Conclusion

These results provide an insight into the intrinsic geographical relatedness and biological differences of the HPV-58 variants, and contribute to further research on the HPV-58 epidemiology, carcinogenesis, and therapeutic vaccine development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.CrossRefPubMed Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.CrossRefPubMed
2.
go back to reference Chan PK, Zhang C, Park JS, Smith-McCune KK, Palefsky JM, Giovannelli L, et al. Geographical distribution and oncogenic risk association of human papillomavirus type 58 E6 and E7 sequence variations. Int J Cancer. 2013;132:2528–36.CrossRefPubMed Chan PK, Zhang C, Park JS, Smith-McCune KK, Palefsky JM, Giovannelli L, et al. Geographical distribution and oncogenic risk association of human papillomavirus type 58 E6 and E7 sequence variations. Int J Cancer. 2013;132:2528–36.CrossRefPubMed
4.
go back to reference Liu Y, Pan Y, Gao W, Ke Y, Lu Z. Whole-genome analysis of human papillomavirus types 16, 18, and 58 isolated from cervical Precancer and Cancer samples in Chinese women. Sci Rep. 2017;7:263.CrossRefPubMedPubMedCentral Liu Y, Pan Y, Gao W, Ke Y, Lu Z. Whole-genome analysis of human papillomavirus types 16, 18, and 58 isolated from cervical Precancer and Cancer samples in Chinese women. Sci Rep. 2017;7:263.CrossRefPubMedPubMedCentral
5.
go back to reference Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol. 1993;67:6413–23.PubMedPubMedCentral Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol. 1993;67:6413–23.PubMedPubMedCentral
6.
go back to reference Münger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28.CrossRefPubMed Münger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28.CrossRefPubMed
7.
go back to reference Romanczuk H, Thierry F, Howley PM. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol. 1990;64:2849–59.PubMedPubMedCentral Romanczuk H, Thierry F, Howley PM. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol. 1990;64:2849–59.PubMedPubMedCentral
8.
go back to reference Soeda E, Ferran MC, Baker CC, McBride AA. Repression of HPV16 early region transcription by the E2 protein. Virology. 2006;351:29–41.CrossRefPubMed Soeda E, Ferran MC, Baker CC, McBride AA. Repression of HPV16 early region transcription by the E2 protein. Virology. 2006;351:29–41.CrossRefPubMed
9.
go back to reference Dong XP, Stubenrauch F, Beyer-Finkler E, Pfister H. Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer. 1994;58:803–8.CrossRefPubMed Dong XP, Stubenrauch F, Beyer-Finkler E, Pfister H. Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer. 1994;58:803–8.CrossRefPubMed
10.
11.
go back to reference Pientong C, Wongwarissara P, Ekalaksananan T, Swangphon P, Kleebkaow P, Kongyingyoes B, et al. Association of human papillomavirus type 16 long control region mutation and cervical cancer. Virol J. 2013;10:30.CrossRefPubMedPubMedCentral Pientong C, Wongwarissara P, Ekalaksananan T, Swangphon P, Kleebkaow P, Kongyingyoes B, et al. Association of human papillomavirus type 16 long control region mutation and cervical cancer. Virol J. 2013;10:30.CrossRefPubMedPubMedCentral
12.
go back to reference Mosmann JP, Monetti MS, Frutos MC, Kiguen AX, Venezuela RF, Cuffini CG. Mutation detection of E6 and LCR genes from HPV 16 associated with carcinogenesis. Asian Pac J Cancer Prev. 2015;16(3):1151–7.CrossRefPubMed Mosmann JP, Monetti MS, Frutos MC, Kiguen AX, Venezuela RF, Cuffini CG. Mutation detection of E6 and LCR genes from HPV 16 associated with carcinogenesis. Asian Pac J Cancer Prev. 2015;16(3):1151–7.CrossRefPubMed
13.
go back to reference Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol. 2005;79:5914–22.CrossRefPubMedPubMedCentral Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol. 2005;79:5914–22.CrossRefPubMedPubMedCentral
14.
go back to reference Pande S, Jain N, Prusty BK, Bhambhani S, Gupta S, Sharma R, et al. Human papillomavirus type 16 variant analysis of E6, E7, and L1 genes and long control region in biopsy samples from cervical Cancer patients in North India. J Clin Microbiol. 2008;46:1060–6.CrossRefPubMedPubMedCentral Pande S, Jain N, Prusty BK, Bhambhani S, Gupta S, Sharma R, et al. Human papillomavirus type 16 variant analysis of E6, E7, and L1 genes and long control region in biopsy samples from cervical Cancer patients in North India. J Clin Microbiol. 2008;46:1060–6.CrossRefPubMedPubMedCentral
15.
go back to reference Xi J, Chen J, Xu M, Yang H, Luo J, Pan Y, et al. Genetic variability and functional implication of the long control region in HPV-16 variants in Southwest China. PLoS One. 2017;12:e0182388.CrossRefPubMedPubMedCentral Xi J, Chen J, Xu M, Yang H, Luo J, Pan Y, et al. Genetic variability and functional implication of the long control region in HPV-16 variants in Southwest China. PLoS One. 2017;12:e0182388.CrossRefPubMedPubMedCentral
16.
go back to reference Yang L, Yang H, Chen J, Huang X, Pan Y, Li D, et al. Genetic variability of HPV-58 E6 and E7 genes in Southwest China. Infect Genet Evol. 2014;21:395–400.CrossRefPubMed Yang L, Yang H, Chen J, Huang X, Pan Y, Li D, et al. Genetic variability of HPV-58 E6 and E7 genes in Southwest China. Infect Genet Evol. 2014;21:395–400.CrossRefPubMed
17.
go back to reference de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76:1057–62.CrossRefPubMed de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76:1057–62.CrossRefPubMed
18.
go back to reference Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997;35:1304–10.PubMedPubMedCentral Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol. 1997;35:1304–10.PubMedPubMedCentral
19.
go back to reference Ayatollahi M, Zakerinia M, Haghshenas M. Molecular analysis of Iranian families with sickle cell disease. J Trop Pediatr. 2005;51:136–40.CrossRefPubMed Ayatollahi M, Zakerinia M, Haghshenas M. Molecular analysis of Iranian families with sickle cell disease. J Trop Pediatr. 2005;51:136–40.CrossRefPubMed
20.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRefPubMed Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRefPubMed
21.
go back to reference Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41:W349–57.CrossRefPubMedPubMedCentral Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41:W349–57.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.PubMed Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.PubMed
24.
go back to reference Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.CrossRefPubMed Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.CrossRefPubMed
25.
26.
go back to reference Singh H, Raghava GP. ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics. 2003;19:1009–14.CrossRefPubMed Singh H, Raghava GP. ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics. 2003;19:1009–14.CrossRefPubMed
27.
go back to reference Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001;17:1236–7.CrossRefPubMed Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics. 2001;17:1236–7.CrossRefPubMed
28.
go back to reference Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–5.CrossRefPubMed Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016;44:D110–5.CrossRefPubMed
30.
go back to reference Chen Z, Jing Y, Wen Q, Ding X, Wang T, Mu X, et al. E6 and E7 gene polymorphisms in human papillomavirus Types-58 and 33 identified in Southwest China. PLoS One. 2017;12:e0171140.CrossRefPubMedPubMedCentral Chen Z, Jing Y, Wen Q, Ding X, Wang T, Mu X, et al. E6 and E7 gene polymorphisms in human papillomavirus Types-58 and 33 identified in Southwest China. PLoS One. 2017;12:e0171140.CrossRefPubMedPubMedCentral
31.
go back to reference Liu JH, Lu ZT, Wang GL, Zhou WQ, Liu C, Yang LX, et al. Variations of human papillomavirus type 58 E6, E7, L1 genes and long control region in strains from women with cervical lesions in Liaoning province, China. Infect Genet Evol. 2012;12:1466–72.CrossRefPubMed Liu JH, Lu ZT, Wang GL, Zhou WQ, Liu C, Yang LX, et al. Variations of human papillomavirus type 58 E6, E7, L1 genes and long control region in strains from women with cervical lesions in Liaoning province, China. Infect Genet Evol. 2012;12:1466–72.CrossRefPubMed
32.
go back to reference Chan PK, Lam CW, Cheung TH, Li WW, Lo KW, Chan MY, et al. Association of human papillomavirus type 58 variant with the risk of cervical cancer. J Natl Cancer Inst. 2002;94:1249–53.CrossRefPubMed Chan PK, Lam CW, Cheung TH, Li WW, Lo KW, Chan MY, et al. Association of human papillomavirus type 58 variant with the risk of cervical cancer. J Natl Cancer Inst. 2002;94:1249–53.CrossRefPubMed
33.
go back to reference Ding T, Wang X, Ye F, Cheng X, Ma D, Lu W, et al. Distribution of human papillomavirus 58 and 52 E6/E7 variants in cervical neoplasia in Chinese women. Gynecol Oncol. 2010;119:436–43.CrossRefPubMed Ding T, Wang X, Ye F, Cheng X, Ma D, Lu W, et al. Distribution of human papillomavirus 58 and 52 E6/E7 variants in cervical neoplasia in Chinese women. Gynecol Oncol. 2010;119:436–43.CrossRefPubMed
34.
go back to reference Murakami M, Gurski KJ, Marincola FM, Ackland J, Steller MA. Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells. Cancer Res. 1999;59:1184–7.PubMed Murakami M, Gurski KJ, Marincola FM, Ackland J, Steller MA. Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells. Cancer Res. 1999;59:1184–7.PubMed
35.
go back to reference Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines. 2016;15:989–1007.CrossRefPubMedPubMedCentral Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines. 2016;15:989–1007.CrossRefPubMedPubMedCentral
36.
go back to reference Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86:6855–61.CrossRefPubMedPubMedCentral Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86:6855–61.CrossRefPubMedPubMedCentral
37.
go back to reference Miettinen M, McCue PA, Sarlomo-Rikala M, Biernat W, Czapiewski P, Kopczynski J, et al. Sox10--a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol. 2015;39:826–35.CrossRefPubMedPubMedCentral Miettinen M, McCue PA, Sarlomo-Rikala M, Biernat W, Czapiewski P, Kopczynski J, et al. Sox10--a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol. 2015;39:826–35.CrossRefPubMedPubMedCentral
38.
go back to reference Tong X, Li L, Li X, Heng L, Zhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget. 2014;5:10571–83.PubMedPubMedCentral Tong X, Li L, Li X, Heng L, Zhong L, Su X, et al. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget. 2014;5:10571–83.PubMedPubMedCentral
39.
go back to reference Zhong WD, Qin GQ, Dai QS, Han ZD, Chen SM, Ling XH, et al. SOXs in human prostate cancer: implication as progression and prognosis factors. BMC Cancer. 2012;12:248.CrossRefPubMedPubMedCentral Zhong WD, Qin GQ, Dai QS, Han ZD, Chen SM, Ling XH, et al. SOXs in human prostate cancer: implication as progression and prognosis factors. BMC Cancer. 2012;12:248.CrossRefPubMedPubMedCentral
Metadata
Title
The polymorphisms of LCR, E6, and E7 of HPV-58 isolates in Yunnan, Southwest China
Authors
Juemin Xi
Junying Chen
Miaoling Xu
Hongying Yang
Songjiao Wen
Yue Pan
Xiaodan Wang
Chao Ye
Lijuan Qiu
Qiangming Sun
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0986-7

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue