Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Quantification and kinetics of viral RNA transcripts produced in Orthohantavirus infected cells

Authors: Julia Wigren Byström, Jonas Näslund, Fredrik Trulsson, Magnus Evander, Olivia Wesula Lwande, Clas Ahlm, Göran Bucht

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Rodent borne viruses of the Orthohantavirus genus cause hemorrhagic fever with renal syndrome among people in Eurasia, and hantavirus cardiopulmonary syndrome in the Americas. At present, there are no specific treatments or efficient vaccines against these diseases. Improved understanding of viral transcription and replication may instigate targeted treatment of Orthohantavirus infections. For this purpose, we investigated the kinetics and levels of viral RNA transcription during an ongoing infection in-vitro.

Methods

Vero E6 cells were infected with Puumala Orthohantavirus (strain Kazan) before cells and supernatants were collected at different time points post infection for the detection of viral RNAs. A plasmid containing primer binding sites of the three Orthohantavirus segments small (S), medium (M) and large (L) was constructed and standard curves were generated to calculate the copy numbers of the individual transcripts in the collected samples.

Results

Our results indicated a rapid increase in the copy number of viral RNAs after 9 h post infection. At peak days, 2–6 days after infection, the S- and M-segment transcripts became thousand and hundred-fold more abundant than the copy number of the L-segment RNA, respectively. The presence of viral RNA in the cell culture media was detected at later time-points.

Conclusions

We have developed a method to follow RNA transcription in-vitro after synchronous infection of Vero cells. The obtained results may contribute to the understanding of the viral replication, and may have implications in the development of antiviral drugs targeting transcription or replication of negative stranded RNA viruses.
Appendix
Available only for authorised users
Literature
1.
go back to reference Holmes EC, Zhang YZ. The evolution and emergence of hantaviruses. Curr Opin Virol. 2015;10:27–33.CrossRefPubMed Holmes EC, Zhang YZ. The evolution and emergence of hantaviruses. Curr Opin Virol. 2015;10:27–33.CrossRefPubMed
2.
3.
go back to reference Bi Z, Formenty PB, Roth CE. Hantavirus infection: a review and global update. J Infect Dev Ctries. 2008;2:3–23.CrossRefPubMed Bi Z, Formenty PB, Roth CE. Hantavirus infection: a review and global update. J Infect Dev Ctries. 2008;2:3–23.CrossRefPubMed
4.
go back to reference Manigold T, Vial P. Human hantavirus infections: epidemiology, clinical features, pathogenesis and immunology. Swiss Med Wkly. 2014;144:w13937.PubMed Manigold T, Vial P. Human hantavirus infections: epidemiology, clinical features, pathogenesis and immunology. Swiss Med Wkly. 2014;144:w13937.PubMed
5.
go back to reference Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O. Hantavirus infections in Europe and their impact on public health. Rev Med Virol. 2013;23:35–49.CrossRefPubMed Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O. Hantavirus infections in Europe and their impact on public health. Rev Med Virol. 2013;23:35–49.CrossRefPubMed
6.
go back to reference Eckerle I, Jakob E, Hofmann J, Schmidt-Bacher A, Ettinger J, Schnitzler P. Atypical severe Puumala hantavirus infection and virus sequence analysis of the patient and regional reservoir host. Zoonoses Public Health. 2012;59(Suppl 2):110–5.CrossRefPubMed Eckerle I, Jakob E, Hofmann J, Schmidt-Bacher A, Ettinger J, Schnitzler P. Atypical severe Puumala hantavirus infection and virus sequence analysis of the patient and regional reservoir host. Zoonoses Public Health. 2012;59(Suppl 2):110–5.CrossRefPubMed
7.
go back to reference Vapalahti O, Mustonen J, Lundkvist A, Henttonen H, Plyusnin A, Vaheri A. Hantavirus infections in Europe. Lancet Infect Dis. 2003;3:653–61.CrossRefPubMed Vapalahti O, Mustonen J, Lundkvist A, Henttonen H, Plyusnin A, Vaheri A. Hantavirus infections in Europe. Lancet Infect Dis. 2003;3:653–61.CrossRefPubMed
8.
go back to reference Balsara JJ, Bapat TR, Gada VP, Nandal NV. Chandorkar AG: effect of ergometrine on methamphetamine and apomorphine stereotypy in the guinea-pig. J Pharm Pharmacol. 1985;37:514–7.CrossRefPubMed Balsara JJ, Bapat TR, Gada VP, Nandal NV. Chandorkar AG: effect of ergometrine on methamphetamine and apomorphine stereotypy in the guinea-pig. J Pharm Pharmacol. 1985;37:514–7.CrossRefPubMed
9.
go back to reference Ganaie SS, Mir MA. The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn. Virus Res. 2014; Ganaie SS, Mir MA. The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn. Virus Res. 2014;
10.
go back to reference Vapalahti O, Kallio-Kokko H, Narvanen A, Julkunen I, Lundkvist A, Plyusnin A, Lehvaslaiho H, Brummer-Korvenkontio M, Vaheri A, Lankinen H: Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. J Med Virol 1995, 46:293-303. Vapalahti O, Kallio-Kokko H, Narvanen A, Julkunen I, Lundkvist A, Plyusnin A, Lehvaslaiho H, Brummer-Korvenkontio M, Vaheri A, Lankinen H: Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. J Med Virol 1995, 46:293-303.
11.
go back to reference Handke W, Oelschlegel R, Franke R, Wiedemann L, Kruger DH, Rang A. Generation and characterization of genetic reassortants between Puumala and Prospect Hill hantavirus in vitro. J Gen Virol. 2010;91:2351–9.CrossRefPubMed Handke W, Oelschlegel R, Franke R, Wiedemann L, Kruger DH, Rang A. Generation and characterization of genetic reassortants between Puumala and Prospect Hill hantavirus in vitro. J Gen Virol. 2010;91:2351–9.CrossRefPubMed
12.
go back to reference Rizvanov AA, Khaiboullina SF, St Jeor S. Development of reassortant viruses between pathogenic hantavirus strains. Virology. 2004;327:225–32.CrossRefPubMed Rizvanov AA, Khaiboullina SF, St Jeor S. Development of reassortant viruses between pathogenic hantavirus strains. Virology. 2004;327:225–32.CrossRefPubMed
13.
go back to reference Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol. 2012;93:1631–44.CrossRefPubMed Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol. 2012;93:1631–44.CrossRefPubMed
14.
go back to reference Muyangwa M, Martynova EV, Khaiboullina SF, Morzunov SP, Rizvanov AA. Hantaviral proteins: structure, functions, and role in hantavirus infection. Front Microbiol. 2015;6:1326.CrossRefPubMedPubMedCentral Muyangwa M, Martynova EV, Khaiboullina SF, Morzunov SP, Rizvanov AA. Hantaviral proteins: structure, functions, and role in hantavirus infection. Front Microbiol. 2015;6:1326.CrossRefPubMedPubMedCentral
15.
go back to reference Cifuentes-Munoz N, Salazar-Quiroz N, Tischler ND. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses. 2014;6:1801–22.CrossRefPubMedPubMedCentral Cifuentes-Munoz N, Salazar-Quiroz N, Tischler ND. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses. 2014;6:1801–22.CrossRefPubMedPubMedCentral
16.
go back to reference Plyusnin A, Elliott RM. Bunyaviridae : molecular and cellular biology. Norfolk, UK: Caister Academic Press; 2011. Plyusnin A, Elliott RM. Bunyaviridae : molecular and cellular biology. Norfolk, UK: Caister Academic Press; 2011.
17.
go back to reference Debing Y, Neyts J, Delang L. The future of antivirals: broad-spectrum inhibitors. Curr Opin Infect Dis. 2015;28:596–602.CrossRefPubMed Debing Y, Neyts J, Delang L. The future of antivirals: broad-spectrum inhibitors. Curr Opin Infect Dis. 2015;28:596–602.CrossRefPubMed
18.
go back to reference Johansson P, Olsson M, Lindgren L, Ahlm C, Elgh F, Holmstrom A, Bucht G. Complete gene sequence of a human Puumala hantavirus isolate, Puumala Umea/hu: sequence comparison and characterisation of encoded gene products. Virus Res. 2004;105:147–55.CrossRefPubMed Johansson P, Olsson M, Lindgren L, Ahlm C, Elgh F, Holmstrom A, Bucht G. Complete gene sequence of a human Puumala hantavirus isolate, Puumala Umea/hu: sequence comparison and characterisation of encoded gene products. Virus Res. 2004;105:147–55.CrossRefPubMed
19.
go back to reference Juto P, Elgh F, Ahlm C, Alexeyev OA, Edlund K, Lundkvist A, Wadell G. The first human isolate of Puumala virus in Scandinavia as cultured from phytohemagglutinin stimulated leucocytes. J Med Virol. 1997;53:150–6.CrossRefPubMed Juto P, Elgh F, Ahlm C, Alexeyev OA, Edlund K, Lundkvist A, Wadell G. The first human isolate of Puumala virus in Scandinavia as cultured from phytohemagglutinin stimulated leucocytes. J Med Virol. 1997;53:150–6.CrossRefPubMed
20.
go back to reference Lundkvist A, Cheng Y, Sjolander KB, Niklasson B, Vaheri A, Plyusnin A. Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys Glareolus, and leads to accumulation of mutants with altered genomic RNA S segment. J Virol. 1997;71:9515–23.PubMedPubMedCentral Lundkvist A, Cheng Y, Sjolander KB, Niklasson B, Vaheri A, Plyusnin A. Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys Glareolus, and leads to accumulation of mutants with altered genomic RNA S segment. J Virol. 1997;71:9515–23.PubMedPubMedCentral
22.
go back to reference Naslund J, Lagerqvist N, Lundkvist A, Evander M, Ahlm C, Bucht G. Kinetics of Rift Valley fever virus in experimentally infected mice using quantitative real-time RT-PCR. J Virol Methods. 2008;151:277–82.CrossRefPubMed Naslund J, Lagerqvist N, Lundkvist A, Evander M, Ahlm C, Bucht G. Kinetics of Rift Valley fever virus in experimentally infected mice using quantitative real-time RT-PCR. J Virol Methods. 2008;151:277–82.CrossRefPubMed
23.
go back to reference Wichgers Schreur PJ, Kortekaas J. Single-molecule FISH reveals non-selective packaging of Rift Valley fever virus genome segments. PLoS Pathog. 2016;12:e1005800.CrossRefPubMedPubMedCentral Wichgers Schreur PJ, Kortekaas J. Single-molecule FISH reveals non-selective packaging of Rift Valley fever virus genome segments. PLoS Pathog. 2016;12:e1005800.CrossRefPubMedPubMedCentral
Metadata
Title
Quantification and kinetics of viral RNA transcripts produced in Orthohantavirus infected cells
Authors
Julia Wigren Byström
Jonas Näslund
Fredrik Trulsson
Magnus Evander
Olivia Wesula Lwande
Clas Ahlm
Göran Bucht
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0932-8

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue