Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Review

The pH stability of foot-and-mouth disease virus

Authors: Hong Yuan, Pinghua Li, Xueqing Ma, Zengjun Lu, Pu Sun, Xingwen Bai, Jing Zhang, Huifang Bao, Yimei Cao, Dong Li, Yuanfang Fu, Yingli Chen, Qifeng Bai, Jie Zhang, Zaixin Liu

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

This review summarized the molecular determinants of the acid stability of FMDV in order to explore the uncoating mechanism of FMDV and improve the acid stability of vaccines.

Background

The foot-and-mouth disease virus (FMDV) capsid is highly acid labile and tends to dissociate into pentameric subunits at acidic condition to release viral RNA for initiating virus replication. However, the acid stability of virus capsid is greatly required for the maintenance of intact virion during the process of virus culture and vaccine production. The conflict between the acid lability in vivo and acid stability in vitro of FMDV capsid promotes the selection of a series of amino acid substitutions which can confer resistance to acid-induced FMDV inactivation. In order to explore the uncoating activity of FMDV and enhance the acid stability of vaccines, we summarized the available works about the pH stability of FMDV.

Main body of the abstract

In this review, we analyzed the intrinsic reasons for the acid instability of FMDV from the structural and functional aspects. We also listed all substitutions obtained by different research methods and showed them in the partial capsid of FMDV. We found that a quadrangle region in the viral capsid was the place where a great many pH-sensitive residues were distributed. As the uncoating event of FMDV is dependent on the pH-sensitive amino acid residues in the capsid, this most pH-sensitive position indicates a potential candidate location for RNA delivery triggered by the acid-induced coat disassociation.

Short conclusion

This review provided an overview of the pH stability of FMDV. The study of pH stability of FMDV not only contributes to the exploration of molecule and mechanism information for FMDV uncoating, but also enlightens the development of FMDV vaccines, including the traditionally inactivated vaccines and the new VLP (virus-like particle) vaccines.
Literature
1.
go back to reference Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Nunez JI, Sobrino F. Evolution of foot-and-mouth disease virus. Virus Res. 2003;91:47–63.CrossRefPubMed Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Nunez JI, Sobrino F. Evolution of foot-and-mouth disease virus. Virus Res. 2003;91:47–63.CrossRefPubMed
3.
go back to reference Alexandersen S, Kitching RP, Mansley LM, Donaldson AI. Clinical and laboratory investigations of five outbreaks of foot-and-mouth disease during the 2001 epidemic in the United Kingdom. Vet Rec. 2003;152:489–96.CrossRefPubMed Alexandersen S, Kitching RP, Mansley LM, Donaldson AI. Clinical and laboratory investigations of five outbreaks of foot-and-mouth disease during the 2001 epidemic in the United Kingdom. Vet Rec. 2003;152:489–96.CrossRefPubMed
5.
go back to reference Grubman MJ, Robertson BH, Morgan DO, Moore DM, Dowbenko D. Biochemical map of polypeptides specified by foot-and-mouth disease virus. J Virol. 1984;50:579–86.PubMedPubMedCentral Grubman MJ, Robertson BH, Morgan DO, Moore DM, Dowbenko D. Biochemical map of polypeptides specified by foot-and-mouth disease virus. J Virol. 1984;50:579–86.PubMedPubMedCentral
6.
go back to reference Belsham GJ. Translation and replication of FMDV RNA. Curr Top Microbiol Immunol. 2005;288:43–70.PubMed Belsham GJ. Translation and replication of FMDV RNA. Curr Top Microbiol Immunol. 2005;288:43–70.PubMed
7.
go back to reference Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 a resolution. Nature. 1989;337:709–16.CrossRefPubMed Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 a resolution. Nature. 1989;337:709–16.CrossRefPubMed
8.
9.
go back to reference Vasquez C, Denoya CD, La Torre JL, Palma EL. Structure of foot-and-mouth disease virus capsid. Virology. 1979;97:195–200.CrossRefPubMed Vasquez C, Denoya CD, La Torre JL, Palma EL. Structure of foot-and-mouth disease virus capsid. Virology. 1979;97:195–200.CrossRefPubMed
10.
go back to reference Fry EE, Stuart DI, Rowlands DJ. The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol. 2005;288:71–101.PubMed Fry EE, Stuart DI, Rowlands DJ. The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol. 2005;288:71–101.PubMed
11.
go back to reference Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Stuart D. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol. 1997;71:9743–52.PubMedPubMedCentral Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Stuart D. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol. 1997;71:9743–52.PubMedPubMedCentral
12.
go back to reference Martin-Acebes MA, Rincon V, Armas-Portela R, Mateu MG, Sobrino F. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol. 2010;84:2902–12.CrossRefPubMedPubMedCentral Martin-Acebes MA, Rincon V, Armas-Portela R, Mateu MG, Sobrino F. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol. 2010;84:2902–12.CrossRefPubMedPubMedCentral
13.
go back to reference Ellard FM, Drew J, Blakemore WE, Stuart DI, King AM. Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol. 1999;80(Pt 8):1911–8.CrossRefPubMed Ellard FM, Drew J, Blakemore WE, Stuart DI, King AM. Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol. 1999;80(Pt 8):1911–8.CrossRefPubMed
14.
go back to reference Martin-Acebes MA, Vazquez-Calvo A, Rincon V, Mateu MG, Sobrino F. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid resistance. J Virol. 2011;85:2733–40.CrossRefPubMed Martin-Acebes MA, Vazquez-Calvo A, Rincon V, Mateu MG, Sobrino F. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid resistance. J Virol. 2011;85:2733–40.CrossRefPubMed
15.
go back to reference Vazquez-Calvo A, Caridi F, Sobrino F, Martin-Acebes MA. An increase in acid resistance of foot-and-mouth disease virus capsid is mediated by a tyrosine replacement of the VP2 histidine previously associated with VP0 cleavage. J Virol. 2014;88:3039–42.CrossRefPubMedPubMedCentral Vazquez-Calvo A, Caridi F, Sobrino F, Martin-Acebes MA. An increase in acid resistance of foot-and-mouth disease virus capsid is mediated by a tyrosine replacement of the VP2 histidine previously associated with VP0 cleavage. J Virol. 2014;88:3039–42.CrossRefPubMedPubMedCentral
16.
go back to reference Caridi F, Vazquez-Calvo A, Sobrino F, Martin-Acebes MA. The pH stability of foot-and-mouth disease virus particles is modulated by residues located at the Pentameric Interface and in the N terminus of VP1. J Virol. 2015;89:5633–42.CrossRefPubMedPubMedCentral Caridi F, Vazquez-Calvo A, Sobrino F, Martin-Acebes MA. The pH stability of foot-and-mouth disease virus particles is modulated by residues located at the Pentameric Interface and in the N terminus of VP1. J Virol. 2015;89:5633–42.CrossRefPubMedPubMedCentral
17.
go back to reference Liang T, Yang DC, Liu MM, Sun C, Wang F, Wang JF, Wang HW, Song SS, Zhou GH, Yu L. Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. Arch Virol. 2014;159:657–67.CrossRefPubMed Liang T, Yang DC, Liu MM, Sun C, Wang F, Wang JF, Wang HW, Song SS, Zhou GH, Yu L. Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. Arch Virol. 2014;159:657–67.CrossRefPubMed
18.
go back to reference Wang H, Song S, Zeng J, Zhou G, Yang D, Liang T, Yu L. Single amino acid substitution of VP1 N17D or VP2 H145Y confers acid-resistant phenotype of type Asia1 foot-and-mouth disease virus. Virol Sin. 2014;29:103–11.CrossRefPubMed Wang H, Song S, Zeng J, Zhou G, Yang D, Liang T, Yu L. Single amino acid substitution of VP1 N17D or VP2 H145Y confers acid-resistant phenotype of type Asia1 foot-and-mouth disease virus. Virol Sin. 2014;29:103–11.CrossRefPubMed
19.
go back to reference Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol. 2015;160:1–16.CrossRefPubMed Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol. 2015;160:1–16.CrossRefPubMed
20.
go back to reference Curry S, Abrams CC, Fry E, Crowther JC, Belsham GJ, Stuart DI, King AM. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol. 1995;69:430–8.PubMedPubMedCentral Curry S, Abrams CC, Fry E, Crowther JC, Belsham GJ, Stuart DI, King AM. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol. 1995;69:430–8.PubMedPubMedCentral
21.
go back to reference Schneemann A. The structural and functional role of RNA in icosahedral virus assembly. Annu Rev Microbiol. 2006;60:51–67.CrossRefPubMed Schneemann A. The structural and functional role of RNA in icosahedral virus assembly. Annu Rev Microbiol. 2006;60:51–67.CrossRefPubMed
22.
go back to reference Stockley PG, Rolfsson O, Thompson GS, Basnak G, Francese S, Stonehouse NJ, Homans SW, Ashcroft AE. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. J Mol Biol. 2007;369:541–52.CrossRefPubMed Stockley PG, Rolfsson O, Thompson GS, Basnak G, Francese S, Stonehouse NJ, Homans SW, Ashcroft AE. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. J Mol Biol. 2007;369:541–52.CrossRefPubMed
23.
go back to reference Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys. 2013;531:65–79.CrossRefPubMed Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys. 2013;531:65–79.CrossRefPubMed
24.
go back to reference Mateo R, Diaz A, Baranowski E, Mateu MG. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem. 2003;278:41019–27.CrossRefPubMed Mateo R, Diaz A, Baranowski E, Mateu MG. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem. 2003;278:41019–27.CrossRefPubMed
25.
go back to reference Rincon V, Rodriguez-Huete A, Lopez-Arguello S, Ibarra-Molero B, Sanchez-Ruiz JM, Harmsen MM, Mateu MG. Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure. 2014;22:1560–70.CrossRefPubMed Rincon V, Rodriguez-Huete A, Lopez-Arguello S, Ibarra-Molero B, Sanchez-Ruiz JM, Harmsen MM, Mateu MG. Identification of the structural basis of thermal lability of a virus provides a rationale for improved vaccines. Structure. 2014;22:1560–70.CrossRefPubMed
26.
go back to reference Lea S, Hernandez J, Blakemore W, Brocchi E, Curry S, Domingo E, Fry E, Abu-Ghazaleh R, King A, Newman J, et al. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure. 1994;2:123–39.CrossRefPubMed Lea S, Hernandez J, Blakemore W, Brocchi E, Curry S, Domingo E, Fry E, Abu-Ghazaleh R, King A, Newman J, et al. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure. 1994;2:123–39.CrossRefPubMed
27.
go back to reference Kotecha A, Seago J, Scott K, Burman A, Loureiro S, Ren J, Porta C, Ginn HM, Jackson T, Perez-Martin E, et al. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol. 2015;22:788–94.CrossRefPubMed Kotecha A, Seago J, Scott K, Burman A, Loureiro S, Ren J, Porta C, Ginn HM, Jackson T, Perez-Martin E, et al. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat Struct Mol Biol. 2015;22:788–94.CrossRefPubMed
28.
go back to reference Twomey T, France LL, Hassard S, Burrage TG, Newman JF, Brown F. Characterization of an acid-resistant mutant of foot-and-mouth disease virus. Virology. 1995;206:69–75.CrossRefPubMed Twomey T, France LL, Hassard S, Burrage TG, Newman JF, Brown F. Characterization of an acid-resistant mutant of foot-and-mouth disease virus. Virology. 1995;206:69–75.CrossRefPubMed
29.
go back to reference van Vlijmen HW, Curry S, Schaefer M, Karplus M. Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol. 1998;275:295–308.CrossRefPubMed van Vlijmen HW, Curry S, Schaefer M, Karplus M. Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J Mol Biol. 1998;275:295–308.CrossRefPubMed
30.
go back to reference Biswal JK, Das B, Sharma GK, Khulape SA, Pattnaik B. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype a. Virus Genes. 2016;52:235–43.CrossRefPubMed Biswal JK, Das B, Sharma GK, Khulape SA, Pattnaik B. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype a. Virus Genes. 2016;52:235–43.CrossRefPubMed
31.
32.
go back to reference Newman JF, Rowlands DJ, Brown F. A physico-chemical sub-grouping of the mammalian picornaviruses. J Gen Virol. 1973;18:171–80.CrossRefPubMed Newman JF, Rowlands DJ, Brown F. A physico-chemical sub-grouping of the mammalian picornaviruses. J Gen Virol. 1973;18:171–80.CrossRefPubMed
33.
go back to reference Marshansky V, Futai M. The V-type H+−ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol. 2008;20:415–26.CrossRefPubMed Marshansky V, Futai M. The V-type H+−ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol. 2008;20:415–26.CrossRefPubMed
34.
go back to reference Yamashiro DJ, Fluss SR, Maxfield FR. Acidification of endocytic vesicles by an ATP-dependent proton pump. J Cell Biol. 1983;97:929–34.CrossRefPubMed Yamashiro DJ, Fluss SR, Maxfield FR. Acidification of endocytic vesicles by an ATP-dependent proton pump. J Cell Biol. 1983;97:929–34.CrossRefPubMed
35.
go back to reference Vazquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martin-Acebes MA. Acid-dependent viral entry. Virus Res. 2012;167:125–37.CrossRefPubMed Vazquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martin-Acebes MA. Acid-dependent viral entry. Virus Res. 2012;167:125–37.CrossRefPubMed
37.
go back to reference Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B. The role of histidine residues in low-pH-mediated viral membrane fusion. Structure. 2006;14:1481–7.CrossRefPubMed Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B. The role of histidine residues in low-pH-mediated viral membrane fusion. Structure. 2006;14:1481–7.CrossRefPubMed
38.
go back to reference Srivastava J, Barber DL, Jacobson MP. Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda). 2007;22:30–9.CrossRef Srivastava J, Barber DL, Jacobson MP. Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda). 2007;22:30–9.CrossRef
39.
go back to reference Belsham GJ, Abrams CC, King AM, Roosien J, Vlak JM. Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J Gen Virol. 1991;72(Pt 3):747–51.CrossRefPubMed Belsham GJ, Abrams CC, King AM, Roosien J, Vlak JM. Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J Gen Virol. 1991;72(Pt 3):747–51.CrossRefPubMed
40.
go back to reference Vazquez-Calvo A, Caridi F, Rodriguez-Pulido M, Borrego B, Saiz M, Sobrino F, Martin-Acebes MA. Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo. J Gen Virol. 2012;93:2382–6.CrossRefPubMed Vazquez-Calvo A, Caridi F, Rodriguez-Pulido M, Borrego B, Saiz M, Sobrino F, Martin-Acebes MA. Modulation of foot-and-mouth disease virus pH threshold for uncoating correlates with differential sensitivity to inhibition of cellular Rab GTPases and decreases infectivity in vivo. J Gen Virol. 2012;93:2382–6.CrossRefPubMed
41.
go back to reference Doel TR, Chong WK. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch Virol. 1982;73:185–91.CrossRefPubMed Doel TR, Chong WK. Comparative immunogenicity of 146S, 75S and 12S particles of foot-and-mouth disease virus. Arch Virol. 1982;73:185–91.CrossRefPubMed
43.
go back to reference Cao YM, Lu ZJ, Sun JC, Sun P, Guo JH, Liu ZX. Synthesis of foot-and-mouth disease virus empty capsids in insect cells through acid-resistant modification. Sci Agric Sin. 2009;42(3):1069–77. (In China) Cao YM, Lu ZJ, Sun JC, Sun P, Guo JH, Liu ZX. Synthesis of foot-and-mouth disease virus empty capsids in insect cells through acid-resistant modification. Sci Agric Sin. 2009;42(3):1069–77. (In China)
44.
go back to reference Liang T, Yang D, Liu M, Sun C, Wang F, Wang J, Wang H, Song S, Zhou G, Yu L. Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. Arch Virol. 2014;159:657–67.CrossRefPubMed Liang T, Yang D, Liu M, Sun C, Wang F, Wang J, Wang H, Song S, Zhou G, Yu L. Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. Arch Virol. 2014;159:657–67.CrossRefPubMed
45.
go back to reference Luna E, Rodriguez-Huete A, Rincon V, Mateo R, Mateu MG. Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol. 2009;83:10140–51.CrossRefPubMedPubMedCentral Luna E, Rodriguez-Huete A, Rincon V, Mateo R, Mateu MG. Systematic study of the genetic response of a variable virus to the introduction of deleterious mutations in a functional capsid region. J Virol. 2009;83:10140–51.CrossRefPubMedPubMedCentral
46.
go back to reference Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R, Greber UF. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog. 2012;8:e1002976.CrossRefPubMedPubMedCentral Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R, Greber UF. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog. 2012;8:e1002976.CrossRefPubMedPubMedCentral
47.
go back to reference Marsh M, Wellsteed J, Kern H, Harms E, Helenius A. Monensin inhibits Semliki Forest virus penetration into culture cells. Proc Natl Acad Sci U S A. 1982;79:5297–301.CrossRefPubMedPubMedCentral Marsh M, Wellsteed J, Kern H, Harms E, Helenius A. Monensin inhibits Semliki Forest virus penetration into culture cells. Proc Natl Acad Sci U S A. 1982;79:5297–301.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Martinez MA, Carrillo C, Gonzalez-Candelas F, Moya A, Domingo E, Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J Virol. 1991;65:3954–7.PubMedPubMedCentral Martinez MA, Carrillo C, Gonzalez-Candelas F, Moya A, Domingo E, Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J Virol. 1991;65:3954–7.PubMedPubMedCentral
50.
go back to reference Warwicker J, Watson HC. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982;157:671–9.CrossRefPubMed Warwicker J, Watson HC. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982;157:671–9.CrossRefPubMed
51.
go back to reference Klapper I, Hagstrom R, Fine R, Sharp K, Honig B. Focusing of electric fields in the active site of cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986;1:47–59.CrossRefPubMed Klapper I, Hagstrom R, Fine R, Sharp K, Honig B. Focusing of electric fields in the active site of cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986;1:47–59.CrossRefPubMed
52.
go back to reference Sternberg MJ, Hayes FR, Russell AJ, Thomas PG, Fersht AR. Prediction of electrostatic effects of engineering of protein charges. Nature. 1987;330:86–8.CrossRefPubMed Sternberg MJ, Hayes FR, Russell AJ, Thomas PG, Fersht AR. Prediction of electrostatic effects of engineering of protein charges. Nature. 1987;330:86–8.CrossRefPubMed
53.
go back to reference Bashford D, Karplus M. pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990;29:10219–25.CrossRefPubMed Bashford D, Karplus M. pKa’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990;29:10219–25.CrossRefPubMed
54.
go back to reference Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B. On the calculation of pKas in proteins. Proteins. 1993;15:252–65.CrossRefPubMed Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B. On the calculation of pKas in proteins. Proteins. 1993;15:252–65.CrossRefPubMed
55.
go back to reference Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006;299:51–82.PubMed Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006;299:51–82.PubMed
56.
go back to reference Sobrino F, Saiz M, Jimenez-Clavero MA, Nunez JI, Rosas MF, Baranowski E, Ley V. Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res. 2001;32:1–30.CrossRefPubMed Sobrino F, Saiz M, Jimenez-Clavero MA, Nunez JI, Rosas MF, Baranowski E, Ley V. Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res. 2001;32:1–30.CrossRefPubMed
57.
go back to reference Maree FF, Blignaut B, de Beer TA, Rieder E. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. PLoS One. 2013;8:e61612.CrossRefPubMedPubMedCentral Maree FF, Blignaut B, de Beer TA, Rieder E. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability. PLoS One. 2013;8:e61612.CrossRefPubMedPubMedCentral
58.
go back to reference Caridi F, Vazquez-Calvo A, Borrego B, McCullough K, Summerfield A, Sobrino F, Martin-Acebes MA. Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Vet Microbiol. 2017;203:275–9.CrossRefPubMed Caridi F, Vazquez-Calvo A, Borrego B, McCullough K, Summerfield A, Sobrino F, Martin-Acebes MA. Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Vet Microbiol. 2017;203:275–9.CrossRefPubMed
59.
go back to reference Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85:776–83.CrossRefPubMed Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85:776–83.CrossRefPubMed
60.
go back to reference Lyu K, Ding J, Han JF, Zhang Y, Wu XY, He YL, Qin CF, Chen R. Human enterovirus 71 uncoating captured at atomic resolution. J Virol. 2014;88:3114–26.CrossRefPubMedPubMedCentral Lyu K, Ding J, Han JF, Zhang Y, Wu XY, He YL, Qin CF, Chen R. Human enterovirus 71 uncoating captured at atomic resolution. J Virol. 2014;88:3114–26.CrossRefPubMedPubMedCentral
61.
go back to reference Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19:424–9.CrossRefPubMedPubMedCentral Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol. 2012;19:424–9.CrossRefPubMedPubMedCentral
62.
go back to reference Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF, Hafenstein S. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240.CrossRefPubMedPubMedCentral Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF, Hafenstein S. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 2013;9:e1003240.CrossRefPubMedPubMedCentral
63.
go back to reference Levy HC, Bostina M, Filman DJ, Hogle JM. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol. 2010;84:4426–41.CrossRefPubMedPubMedCentral Levy HC, Bostina M, Filman DJ, Hogle JM. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol. 2010;84:4426–41.CrossRefPubMedPubMedCentral
64.
go back to reference Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol. 1990;64:1934–45.PubMedPubMedCentral Fricks CE, Hogle JM. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol. 1990;64:1934–45.PubMedPubMedCentral
65.
go back to reference Ren J, Wang X, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter TS, Gilbert RJ, Zhao Y, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat Commun. 2013;4:1929.PubMedPubMedCentral Ren J, Wang X, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter TS, Gilbert RJ, Zhao Y, et al. Picornavirus uncoating intermediate captured in atomic detail. Nat Commun. 2013;4:1929.PubMedPubMedCentral
66.
go back to reference Garriga D, Pickl-Herk A, Luque D, Wruss J, Caston JR, Blaas D, Verdaguer N. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473.CrossRefPubMedPubMedCentral Garriga D, Pickl-Herk A, Luque D, Wruss J, Caston JR, Blaas D, Verdaguer N. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012;8:e1002473.CrossRefPubMedPubMedCentral
67.
go back to reference Prchla E, Kuechler E, Blaas D, Fuchs R. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol. 1994;68:3713–23.PubMedPubMedCentral Prchla E, Kuechler E, Blaas D, Fuchs R. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol. 1994;68:3713–23.PubMedPubMedCentral
68.
go back to reference Mullapudi E, Novacek J, Palkova L, Kulich P, Lindberg AM, van Kuppeveld FJ, Plevka P. Structure and genome release mechanism of the human Cardiovirus Saffold virus 3. J Virol. 2016;90:7628–39.CrossRefPubMedPubMedCentral Mullapudi E, Novacek J, Palkova L, Kulich P, Lindberg AM, van Kuppeveld FJ, Plevka P. Structure and genome release mechanism of the human Cardiovirus Saffold virus 3. J Virol. 2016;90:7628–39.CrossRefPubMedPubMedCentral
69.
go back to reference Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, Stuart DI, Fry EE. Equine rhinitis a virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog. 2009;5:e1000620.CrossRefPubMedPubMedCentral Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ, Stuart DI, Fry EE. Equine rhinitis a virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog. 2009;5:e1000620.CrossRefPubMedPubMedCentral
70.
go back to reference Bakker SE, Groppelli E, Pearson AR, Stockley PG, Rowlands DJ, Ranson NA. Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis a virus particle. J Virol. 2014;88:6093–9.CrossRefPubMedPubMedCentral Bakker SE, Groppelli E, Pearson AR, Stockley PG, Rowlands DJ, Ranson NA. Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis a virus particle. J Virol. 2014;88:6093–9.CrossRefPubMedPubMedCentral
Metadata
Title
The pH stability of foot-and-mouth disease virus
Authors
Hong Yuan
Pinghua Li
Xueqing Ma
Zengjun Lu
Pu Sun
Xingwen Bai
Jing Zhang
Huifang Bao
Yimei Cao
Dong Li
Yuanfang Fu
Yingli Chen
Qifeng Bai
Jie Zhang
Zaixin Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0897-z

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue