Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome

Authors: Lindani Moyo, Shunmugiah V. Ramesh, Madhu Kappagantu, Neena Mitter, Vidyasagar Sathuvalli, Hanu R. Pappu

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome.

Methods

The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR.

Results

The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3′ UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic information processing, plant-pathogen interactions, plant defense and stress response processes in potato.

Conclusions

The findings suggested that the PVY-derived vsiRNAs could act as a pathogenicity determinant and as a counter-defense strategy to host RNA silencing in PVY-potato interactions. The broad range of host genes targeted by PVY vsiRNAs in infected potato suggests a diverse role for vsiRNAs that includes suppression of host stress responses and developmental processes. The interactome scenario is the first report on the interaction between one of the most important Potyvirus genome-derived siRNAs and the potato transcripts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gray S, De Boer S, Lorenzen J, Karasev A, Whitworth J, Nolte P, Singh R, Boucher A, Xu H. Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Dis. 2010;94:1384–97.CrossRef Gray S, De Boer S, Lorenzen J, Karasev A, Whitworth J, Nolte P, Singh R, Boucher A, Xu H. Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Dis. 2010;94:1384–97.CrossRef
2.
go back to reference Karasev AV, Gray SM. Continuous and emerging challenges of Potato virus Y in potato. Annu Rev Phytopathol. 2013;51:571–86.CrossRefPubMed Karasev AV, Gray SM. Continuous and emerging challenges of Potato virus Y in potato. Annu Rev Phytopathol. 2013;51:571–86.CrossRefPubMed
3.
go back to reference Nie X, Singh RP, Singh M. Molecular and pathological characterization of N: O isolates of the Potato virus Y from Manitoba, Canada. Can J of Plant Pathol. 2004;26:573–83.CrossRef Nie X, Singh RP, Singh M. Molecular and pathological characterization of N: O isolates of the Potato virus Y from Manitoba, Canada. Can J of Plant Pathol. 2004;26:573–83.CrossRef
4.
go back to reference Riechmann JL, Laín S, García JA. Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992;73:1–16.CrossRefPubMed Riechmann JL, Laín S, García JA. Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992;73:1–16.CrossRefPubMed
6.
go back to reference Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 2015;16:995–1004.CrossRefPubMedPubMedCentral Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 2015;16:995–1004.CrossRefPubMedPubMedCentral
7.
go back to reference Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Praveen S, Rabenstein F, Stenger D, Wang A, et al. ICTV virus taxonomy profile: Potyviridae. J Gen Virol. 2017;98:352–4.CrossRefPubMed Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Praveen S, Rabenstein F, Stenger D, Wang A, et al. ICTV virus taxonomy profile: Potyviridae. J Gen Virol. 2017;98:352–4.CrossRefPubMed
8.
go back to reference King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2012. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2012.
9.
go back to reference Karasev AV, Hu X, Brown CJ, Kerlan C, Nikolaeva OV, Crosslin JM, Gray SM. Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY strains. Phytopathology. 2011;101:778–85.CrossRefPubMedPubMedCentral Karasev AV, Hu X, Brown CJ, Kerlan C, Nikolaeva OV, Crosslin JM, Gray SM. Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY strains. Phytopathology. 2011;101:778–85.CrossRefPubMedPubMedCentral
10.
go back to reference Hu X, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of Potato virus Y recombinants. J Gen Virol. 2009;90:3033–41.CrossRefPubMed Hu X, Karasev AV, Brown CJ, Lorenzen JH. Sequence characteristics of Potato virus Y recombinants. J Gen Virol. 2009;90:3033–41.CrossRefPubMed
11.
go back to reference Revers F, Le Gall O, Candresse T, Le Romancer M, Dunez J. Frequent occurrence of recombinant potyvirus isolates. J Gen Virol. 1996;77:1953–65.CrossRefPubMed Revers F, Le Gall O, Candresse T, Le Romancer M, Dunez J. Frequent occurrence of recombinant potyvirus isolates. J Gen Virol. 1996;77:1953–65.CrossRefPubMed
12.
go back to reference Singh RP, Valkonen JP, Gray SM, Boonham N, Jones RA, Kerlan C, Schubert J. Discussion paper. The naming of Potato virus Y strains infecting potato. Arch Virol. 2008;153:1–13.CrossRefPubMed Singh RP, Valkonen JP, Gray SM, Boonham N, Jones RA, Kerlan C, Schubert J. Discussion paper. The naming of Potato virus Y strains infecting potato. Arch Virol. 2008;153:1–13.CrossRefPubMed
14.
go back to reference Funke CN, Nikolaeva OV, Green KJ, Tran LT, Chikh-Ali M, Quintero-Ferrer A, Cating RA, Frost KE, Hamm PB, Olsen N, et al. Strain-specific resistance to Potato virus Y (PVY) in potato and its effect on the relative abundance of PVY strains in commercial potato fields. Plant Dis. 2016;101:20–8.CrossRef Funke CN, Nikolaeva OV, Green KJ, Tran LT, Chikh-Ali M, Quintero-Ferrer A, Cating RA, Frost KE, Hamm PB, Olsen N, et al. Strain-specific resistance to Potato virus Y (PVY) in potato and its effect on the relative abundance of PVY strains in commercial potato fields. Plant Dis. 2016;101:20–8.CrossRef
15.
go back to reference Naveed K, Mitter N, Harper A, Dhingra A, Pappu HR. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank Virus Res. 2014;191:153–60.CrossRefPubMed Naveed K, Mitter N, Harper A, Dhingra A, Pappu HR. Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank Virus Res. 2014;191:153–60.CrossRefPubMed
16.
go back to reference Margaria P, Miozzi L, Rosa C, Axtell MJ, Pappu HR, Turina M. Small RNA profiles of wild-type and silencing suppressor-deficient Tomato spotted wilt virus infected Nicotiana benthamiana. Virus Res. 2015;208:30–8.CrossRefPubMed Margaria P, Miozzi L, Rosa C, Axtell MJ, Pappu HR, Turina M. Small RNA profiles of wild-type and silencing suppressor-deficient Tomato spotted wilt virus infected Nicotiana benthamiana. Virus Res. 2015;208:30–8.CrossRefPubMed
17.
go back to reference Margaria P, Miozzi L, Ciuffo M, Rosa C, Axtell MJ, Pappu HR, Turina M. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by Polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res. 2016;211:38–45.CrossRefPubMed Margaria P, Miozzi L, Ciuffo M, Rosa C, Axtell MJ, Pappu HR, Turina M. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by Polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res. 2016;211:38–45.CrossRefPubMed
18.
go back to reference Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol. 2005;8:415–23.CrossRefPubMed Dunoyer P, Voinnet O. The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol. 2005;8:415–23.CrossRefPubMed
19.
go back to reference Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 2007;5:e57.CrossRefPubMedPubMedCentral Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 2007;5:e57.CrossRefPubMedPubMedCentral
22.
go back to reference Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM. Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34:6233–46.CrossRefPubMedPubMedCentral Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM. Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34:6233–46.CrossRefPubMedPubMedCentral
23.
go back to reference Curaba J, Chen X. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem. 2008;283:3059–66.CrossRefPubMed Curaba J, Chen X. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem. 2008;283:3059–66.CrossRefPubMed
24.
go back to reference Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase–specific cDNA clone from tomato. Plant Cell. 1998;10:2087–101.PubMedPubMedCentral Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase–specific cDNA clone from tomato. Plant Cell. 1998;10:2087–101.PubMedPubMedCentral
25.
go back to reference Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13:317–28.CrossRefPubMed Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 2008;13:317–28.CrossRefPubMed
26.
go back to reference Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O. Small RNA duplexes function as mobile silencing signals between plant cells. Science. 2010;328:912–6.CrossRefPubMed Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O. Small RNA duplexes function as mobile silencing signals between plant cells. Science. 2010;328:912–6.CrossRefPubMed
27.
go back to reference Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–5.CrossRefPubMed Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–5.CrossRefPubMed
28.
go back to reference Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics. 2014;15:348.CrossRefPubMedPubMedCentral Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics. 2014;15:348.CrossRefPubMedPubMedCentral
29.
go back to reference Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. psRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40:W22–8.PubMed Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. psRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 2012;40:W22–8.PubMed
31.
go back to reference Bonnet E, He Y, Billiau K, Van de Peer Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 2010;26:1566–8.CrossRefPubMed Bonnet E, He Y, Billiau K, Van de Peer Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 2010;26:1566–8.CrossRefPubMed
32.
go back to reference Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.CrossRefPubMed Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.CrossRefPubMed
33.
go back to reference Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;10:513–20.CrossRef Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;10:513–20.CrossRef
34.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.CrossRefPubMedPubMedCentral
35.
go back to reference Hu X, Meacham T, Ewing L, Gray SM, Karasev AV. A novel recombinant strain of Potato virus Y suggests a new viral genetic determinant of vein necrosis in tobacco. Virus Res. 2009;143:68–76.CrossRefPubMed Hu X, Meacham T, Ewing L, Gray SM, Karasev AV. A novel recombinant strain of Potato virus Y suggests a new viral genetic determinant of vein necrosis in tobacco. Virus Res. 2009;143:68–76.CrossRefPubMed
36.
go back to reference Lorenzen JH, Meacham T, Berger P, Shiel PJ, Crosslin JM, Hamm P, Kopp H. Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch Virol. 2006;151:1055–74.CrossRefPubMed Lorenzen JH, Meacham T, Berger P, Shiel PJ, Crosslin JM, Hamm P, Kopp H. Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch Virol. 2006;151:1055–74.CrossRefPubMed
41.
go back to reference Hulsen T, de Vlieg J, Alkema W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:488.CrossRefPubMedPubMedCentral Hulsen T, de Vlieg J, Alkema W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:488.CrossRefPubMedPubMedCentral
43.
go back to reference Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G: profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–200.CrossRefPubMedPubMedCentral Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G: profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35:W193–200.CrossRefPubMedPubMedCentral
45.
go back to reference Hirsch CD, Hamilton JP, Childs KL, Cepela J, Crisovan E, Vaillancourt B, Hirsch CN, Habermann M, Neal B, Buell CR. Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome 2014;7:1-12. Hirsch CD, Hamilton JP, Childs KL, Cepela J, Crisovan E, Vaillancourt B, Hirsch CN, Habermann M, Neal B, Buell CR. Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome 2014;7:1-12.
47.
go back to reference Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.CrossRefPubMedPubMedCentral Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.CrossRefPubMedPubMedCentral
49.
go back to reference Nicot N, Hausman J-F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56:2907–14.CrossRefPubMed Nicot N, Hausman J-F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56:2907–14.CrossRefPubMed
50.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.CrossRefPubMed
51.
go back to reference Ghandi A, Adi M, Lilia F, Linoy A, Or R, Mikhail K, Mouhammad Z, Henryk C, Rena G. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep. 2016;6:19715.CrossRefPubMedPubMedCentral Ghandi A, Adi M, Lilia F, Linoy A, Or R, Mikhail K, Mouhammad Z, Henryk C, Rena G. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep. 2016;6:19715.CrossRefPubMedPubMedCentral
52.
go back to reference Boonham N, Walsh K, Hims M, Preston S, North J, Barker I. Biological and sequence comparisons of Potato virus Y isolates associated with potato tuber necrotic ringspot disease. Plant Pathol. 2002;51:117–26.CrossRef Boonham N, Walsh K, Hims M, Preston S, North J, Barker I. Biological and sequence comparisons of Potato virus Y isolates associated with potato tuber necrotic ringspot disease. Plant Pathol. 2002;51:117–26.CrossRef
53.
go back to reference Le Romancer M, Nedellec M. Effect of plant genotype, virus isolate and temperature on the expression of the potato tuber necrotic ringspot disease (PTNRD). Plant Pathol. 1997;46:104–11.CrossRef Le Romancer M, Nedellec M. Effect of plant genotype, virus isolate and temperature on the expression of the potato tuber necrotic ringspot disease (PTNRD). Plant Pathol. 1997;46:104–11.CrossRef
54.
go back to reference Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog. 2011;7:e1002021.CrossRefPubMedPubMedCentral Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyan J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog. 2011;7:e1002021.CrossRefPubMedPubMedCentral
55.
56.
go back to reference Catalano D, Cillo F, Finetti-Sialer M. In silico prediction of virus-derived small interfering RNAs and their putative host messenger targets in Solanum lycopersicum infected by different Potato virus Y isolates. EMBnet journal. 2012;18:83–4.CrossRef Catalano D, Cillo F, Finetti-Sialer M. In silico prediction of virus-derived small interfering RNAs and their putative host messenger targets in Solanum lycopersicum infected by different Potato virus Y isolates. EMBnet journal. 2012;18:83–4.CrossRef
57.
go back to reference Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003.CrossRefPubMed Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F. Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J. 2012;70:991–1003.CrossRefPubMed
58.
go back to reference Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11:61.CrossRefPubMedPubMedCentral Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11:61.CrossRefPubMedPubMedCentral
59.
go back to reference Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One. 2012;7:1–13.CrossRef Nischal L, Mohsin M, Khan I, Kardam H, Wadhwa A, Abrol YP, Iqbal M, Ahmad A. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS One. 2012;7:1–13.CrossRef
60.
go back to reference Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol. 2014;14:123.CrossRefPubMedPubMedCentral Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol. 2014;14:123.CrossRefPubMedPubMedCentral
61.
go back to reference Yahubyan G, Apostolova E, Minkov I, Baev V. Small RNAs in crop response to temperature stress noncoding RNAs in plants. In: Mohammad Pessarakli. Handbook of plant and crop physiology, 3rd Ed. Boca Raton: CRC Press; 2014. p. 785–794. Yahubyan G, Apostolova E, Minkov I, Baev V. Small RNAs in crop response to temperature stress noncoding RNAs in plants. In: Mohammad Pessarakli. Handbook of plant and crop physiology, 3rd Ed. Boca Raton: CRC Press; 2014. p. 785–794.
62.
go back to reference Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318–27.CrossRefPubMed Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318–27.CrossRefPubMed
63.
go back to reference Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K. HSP90 stabilizes auxin-responsive phenotypes by masking a mutation in the auxin receptor TIR1. Plant Cell Physiol. 2016;57:2245–54.CrossRefPubMed Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K. HSP90 stabilizes auxin-responsive phenotypes by masking a mutation in the auxin receptor TIR1. Plant Cell Physiol. 2016;57:2245–54.CrossRefPubMed
65.
go back to reference Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y, Reiter RJ, He C, Shi H. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res. 2017;62:1-12. Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y, Reiter RJ, He C, Shi H. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res. 2017;62:1-12.
66.
go back to reference Tran PT, Choi H, Choi D, Kim KH. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana. Virology. 2016;495:167–72.CrossRefPubMed Tran PT, Choi H, Choi D, Kim KH. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana. Virology. 2016;495:167–72.CrossRefPubMed
67.
go back to reference Feng J, Liu S, Chen J. Characterization and functional analysis of viral siRNAs in tomato infected with Cucumber Mosaic Virus. J Nanosci Nanotechnol. 2016;16:6816–28.CrossRef Feng J, Liu S, Chen J. Characterization and functional analysis of viral siRNAs in tomato infected with Cucumber Mosaic Virus. J Nanosci Nanotechnol. 2016;16:6816–28.CrossRef
68.
go back to reference Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929.CrossRefPubMedPubMedCentral Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929.CrossRefPubMedPubMedCentral
69.
go back to reference McNab JM, Villemez CL, Albersheim P. Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. Biochem J. 1968;106:355–60.CrossRefPubMedPubMedCentral McNab JM, Villemez CL, Albersheim P. Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. Biochem J. 1968;106:355–60.CrossRefPubMedPubMedCentral
70.
go back to reference Peugnet I, Goubet F, Bruyant-Vannier M-P, Thoiron B, Morvan C, Schols HA, Voragen AG. Solubilization of rhamnogalacturonan I galactosyltransferases from membranes of a flax cell suspension. Planta. 2001;213:435–45.CrossRefPubMed Peugnet I, Goubet F, Bruyant-Vannier M-P, Thoiron B, Morvan C, Schols HA, Voragen AG. Solubilization of rhamnogalacturonan I galactosyltransferases from membranes of a flax cell suspension. Planta. 2001;213:435–45.CrossRefPubMed
71.
go back to reference Strasser R, Bondili JS, Vavra U, Schoberer J, Svoboda B, Glössl J, Léonard R, Stadlmann J, Altmann F, Steinkellner H. A unique β1, 3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell. 2007;19:2278–92.CrossRefPubMedPubMedCentral Strasser R, Bondili JS, Vavra U, Schoberer J, Svoboda B, Glössl J, Léonard R, Stadlmann J, Altmann F, Steinkellner H. A unique β1, 3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell. 2007;19:2278–92.CrossRefPubMedPubMedCentral
72.
go back to reference Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Doblin MS, Bacic A, Ishiguro S. KNS4/UPEX1: a type II arabinogalactan β-(1, 3)-galactosyltransferase required for pollen exine development. Plant Physiol. 2017;173:183–205.CrossRefPubMed Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Doblin MS, Bacic A, Ishiguro S. KNS4/UPEX1: a type II arabinogalactan β-(1, 3)-galactosyltransferase required for pollen exine development. Plant Physiol. 2017;173:183–205.CrossRefPubMed
73.
go back to reference Deokar AA, Tar'an B. Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front. Plant Sci. 2016;7:1-18. Deokar AA, Tar'an B. Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front. Plant Sci. 2016;7:1-18.
74.
go back to reference Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS. Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol. 2017;17:1-18. Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS. Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol. 2017;17:1-18.
75.
go back to reference Martins CP, Neves DM, Cidade LC, Mendes AF, Silva DC, Almeida AF, Coelho-Filho MA, Gesteira AS, Soares-Filho WS, Costa MG. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta. 2017;245(5):951–63.CrossRefPubMed Martins CP, Neves DM, Cidade LC, Mendes AF, Silva DC, Almeida AF, Coelho-Filho MA, Gesteira AS, Soares-Filho WS, Costa MG. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta. 2017;245(5):951–63.CrossRefPubMed
77.
go back to reference Sade D, Sade N, Shriki O, Lerner S, Gebremedhin A, Karavani A, Brotman Y, Osorio S, Fernie AR, Willmitzer L, et al. Water balance, hormone homeostasis, and sugar signaling are all involved in tomato resistance to Tomato Yellow Leaf Curl Virus. Plant Physiol. 2014;165:1684–97.CrossRefPubMedPubMedCentral Sade D, Sade N, Shriki O, Lerner S, Gebremedhin A, Karavani A, Brotman Y, Osorio S, Fernie AR, Willmitzer L, et al. Water balance, hormone homeostasis, and sugar signaling are all involved in tomato resistance to Tomato Yellow Leaf Curl Virus. Plant Physiol. 2014;165:1684–97.CrossRefPubMedPubMedCentral
78.
79.
go back to reference Avina-Padilla K, de la Vega OM, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene. 2015;564:197–205.CrossRefPubMed Avina-Padilla K, de la Vega OM, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene. 2015;564:197–205.CrossRefPubMed
80.
go back to reference Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One. 2009;4:e4971.CrossRefPubMedPubMedCentral Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One. 2009;4:e4971.CrossRefPubMedPubMedCentral
81.
go back to reference Xia Z, Peng J, Li Y, Chen L, Li S, Zhou T, Fan Z. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing. PLoS One. 2014;9:1-8. Xia Z, Peng J, Li Y, Chen L, Li S, Zhou T, Fan Z. Characterization of small interfering RNAs derived from Sugarcane mosaic virus in infected maize plants by deep sequencing. PLoS One. 2014;9:1-8.
82.
go back to reference Shi B, Lin L, Wang S, Guo Q, Zhou H, Rong L, Li J, Peng J, Lu Y, Zheng H, et al. Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol. 2016;209:1106–19.CrossRefPubMed Shi B, Lin L, Wang S, Guo Q, Zhou H, Rong L, Li J, Peng J, Lu Y, Zheng H, et al. Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol. 2016;209:1106–19.CrossRefPubMed
83.
go back to reference Fahim M, Larkin PJ. Designing effective amiRNA and multimeric amiRNA against plant viruses. siRNA Design: Methods and Protocols. 2013;942:357–77. Fahim M, Larkin PJ. Designing effective amiRNA and multimeric amiRNA against plant viruses. siRNA Design: Methods and Protocols. 2013;942:357–77.
84.
go back to reference Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 2006;24:1420–8.CrossRefPubMed Niu Q-W, Lin S-S, Reyes JL, Chen K-C, Wu H-W, Yeh S-D, Chua N-H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 2006;24:1420–8.CrossRefPubMed
Metadata
Title
The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome
Authors
Lindani Moyo
Shunmugiah V. Ramesh
Madhu Kappagantu
Neena Mitter
Vidyasagar Sathuvalli
Hanu R. Pappu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0803-8

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue