Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Comparison of serological assays to titrate Hantaan and Seoul hantavirus-specific antibodies

Authors: Weihong Li, Shouchun Cao, Quanfu Zhang, Jiandong Li, Shuo Zhang, Wei Wu, Jing Qu, Chuan Li, Mifang Liang, Dexin Li

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Hantaan and Seoul viruses, in the Hantavirus genus, are known to cause hemorrhagic fever with renal syndrome (HFRS). The plaque reduction neutralization test (PRNT), as conventional neutralization test for hantaviruses, is laborious and time-consuming. Alternatives to PRNT for hantaviruses are required.

Methods

In this study, the methods for Hantaan and Seoul viruses serological typing including microneutralization test (MNT), pseudoparticle neutralization test (PPNT) and immunofluorescence assay based on viral glycoproteins (IFA-GP) were developed and compared with PRNT using a panel of 74 sera including 44 convalescent sera of laboratory confirmed HFRS patients and 30 patients sera of non-hantavirus infection. Antibody titres and serotyping obtained with different methods above were analyzed by paired-t, linear correlation, McNemar χ2 and Kappa agreement tests.

Results

Antibody titres obtained with MNT50, PPNT50 and IFA-GP were significantly correlated with that obtained with PRNT50 (p < 0.001). GMT determined by PPNT50 was statistically higher than that determined by PRNT50 (p < 0.001), while GMT determined by MNT50 and IFA-GP were equal with (p > 0.05) and less than (p < 0.001) that obtained with PRNT50 respectively. Serotyping obtained with MNT50 and PRNT50, PPNT50 and PRNT50 were highly consistent (p < 0.001), whereas that obtained with IFA-GP and PRNT50 were moderately consistent (p < 0.001). There were no significant differences for serotyping between PRNT50 and MNT50, as well as PRNT50 and PPNT50 (p > 0.05). IFA-GP was less sensitive than PRNT50 and MNT50 for serotyping of hantaviruses infection (p < 0.05). However, for 79.5% (35/44) samples, serotyping determined by IFA-GP and PRNT50 were consistent.

Conclusions

MNT50 and PPNT50 both can be used as simple and rapid alternatives to PRNT50, and MNT50 is more specific while PPNT50 is more sensitive than other assays for neutralizing antibody determination. So far, this work has been the most comprehensive comparison of alternatives to PRNT.

Literature
  1. Schmaljohn CS, Hasty SE, Dalrymple JM, et al. Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science. 1985;227(4690):1041–4.View ArticlePubMed
  2. Elliott RM. Molecular biology of the Bunyaviridae. J Gen Virol. 1990;71:501–22.View ArticlePubMed
  3. Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol. 2011;92:2467–84.View ArticlePubMed
  4. Muyangwa M, Martynova EV, Khaiboullina SF, et al. Hantaviral proteins: structure, functions, and role in hantavirus infection. Front Microbiol. 2015;6:1326.View ArticlePubMedPubMed Central
  5. Yoshimatsu K, Arikawa J. Antigenic properties of N protein of hantavirus. Viruses. 2014;6(8):3097–109.View ArticlePubMedPubMed Central
  6. Arikawa J, Schmaljohn AL, Dalrymple JM, et al. Characterization of Hantaan virus envelope glycoprotein antigenic determinants defined by monoclonal antibodies. J Gen Virol. 1989;70:615–24.View ArticlePubMed
  7. Dantas JR Jr, Okuno Y, Asada H, et al. Characterization of glycoproteins of viruses causing hemorrhagic fever with renal syndrome (HFRS) using monoclonal antibodies. Virology. 1986;151(2):379–84.View ArticlePubMed
  8. Hooper JW, Custer DM, Thompson E, et al. DNA vaccination with the Hantaan virus M gene protects hamsters against three of four HFRS hantaviruses and elicits a high-titre neutralizing antibody response in rhesus monkeys. J Virol. 2001;75:8469–77.View ArticlePubMedPubMed Central
  9. Schmaljohn C, Hjelle B. Hantaviruses: a global disease problem. Emerg Infect Dis. 1997;3(2):95–104.View ArticlePubMedPubMed Central
  10. Hart CA, Bennett M. Hantavirus infections: epidemiology and pathogenesis. Microbes Infect. 1999;1(14):1229–37.View ArticlePubMed
  11. Song G. Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chin Med J. 1999;112(5):472–7.PubMed
  12. Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus ecology,epidemiology,and disease. Clin Microbiol Rev. 2010;23(2):412–41.View ArticlePubMedPubMed Central
  13. Chu YK, Jennings G, Schmaljohn A, et al. Cross-neutralization of hantaviruses with immune sera from experimentally infected animals and from hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome patients. J Infect Dis. 1995;172(6):1581–4.View ArticlePubMed
  14. Lee PW, Gibbs CJ Jr, Gajdusek DC, et al. Serotypic classification of hantaviruses by indirect immunofluorescent antibody and plaque reduction neutralization tests. J Clin Microbiol. 1985;22(6):940–4.PubMedPubMed Central
  15. Yu YX, Yao ZH, An Q, et al. Studies on serotypic classification of viruses of hemorrhagic fever with renal syndrome by plaque reduction neutralization test. Bing Du Xue Bao. 1991;7:18–22.
  16. Anderson LJ, Hierholzer JC, Bingham PG, et al. Microneutralization test for respiratory syncytial virus based on an enzyme immunoassay. J Clin Microbiol. 1985;22(6):1050–2.PubMedPubMed Central
  17. Kenny MT, Albright KL, Sanderson RP. Microneutralization test for the determination of mumps antibody in vero cells. Appl Microbiol. 1970;20(3):371–3.PubMedPubMed Central
  18. Mannen K, Mifune K, Reid-Sanden FL, et al. Microneutralization test for rabies virus based on an enzyme immunoassay. J Clin Microbiol. 1987;25(12):2440–2.PubMedPubMed Central
  19. Vorndam V, Beltran M. Enzyme-linked immunosorbent assay-format microneutralization test for dengue viruses. Am J Trop Med Hyg. 2002;66(2):208–12.View ArticlePubMed
  20. Benne CA, Harmsen M, De Jong JC, et al. Neutralization enzyme immunoassay for influenza Virus. J Clin Microbiol. 1994;32(4):987–90.PubMedPubMed Central
  21. World Health Organization. 2010. Serological diagnosis of influenza by microneutralization assay. http://​www.​who.​int/​influenza/​gisrs_​laboratory/​2010_​12_​06_​serological_​diagnosis_​of_​influenza_​by_​microneutralizat​ion_​assay.​pdf?​ua=​1.
  22. Hörling J, Lundkvist A, Huggins JW, et al. Antibodies to Puumala virus in humans determined by neutralization test. J Virol Methods. 1992;39(1–2):139–47.View ArticlePubMed
  23. Takada A, Robison C, Goto H, et al. A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A. 1997;94(26):14764–9.View ArticlePubMedPubMed Central
  24. Tani H, Iha K, Shimojima M, et al. Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J Virol. 2014;88(13):7317–30.View ArticlePubMedPubMed Central
  25. Garcia JM, Lai JC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti-Infect Ther. 2016;9(4):443–55.View Article
  26. Garcia JM, Lagarde N, Ma ES, et al. Optimization and evaluation of an influenza a (H5) pseudotyped lentiviral particle-based serological assay. J Clin Virol. 2010;47:29–33.View ArticlePubMed
  27. Hofmann H, Li X, Zhang X, et al. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013;87(8):4384–94.View ArticlePubMedPubMed Central
  28. Cifuentes-Muñoz N, Darlix JL, Tischler ND. Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res. 2010;153(1):29–35.View ArticlePubMed
  29. Qian Z, Haessler M, Lemos JA, et al. Targeting vascular injury using hantavirus-pseudotyped lentiviral vectors. Mol Ther. 2006;13(4):694–704.View ArticlePubMed
  30. Ma M, Kersten DB, Kamrud KI, et al. Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: a system for analysis of cell tropism. Virus Res. 1999;64(1):23–32.View ArticlePubMed
  31. Ogino M, Ebihara H, Lee BH, et al. Use of vesicular stomatitis virus pseudotypes bearing hantaan or seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol. 2003;10(1):154–60.PubMedPubMed Central
  32. Ray N, Whidby J, Stewart S, et al. Study of Andes virus entry and neutralization using a pseudovirion system. J Virol Methods. 2010;163(2):416–23.View ArticlePubMed
  33. Higa MM, Petersen J, Hooper J, et al. Efficient production of Hantaan and Puumala pseudovirions for viral tropism and neutralization studies. Virology. 2012;423(2):134–42.View ArticlePubMed
  34. Blight KJ, McKeating JA, Rice CM. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol. 2002;76(24):13001–14.View ArticlePubMedPubMed Central
  35. Liang MF, Song G, Hang CS, et al. Preliminary study on structure protein of epidemic hemorrhagic fever virus using monoclonal antibodies. Bing Du Xue Bao. 1989;5(3):217–23.
  36. Koch J, Liang M, Queitsch I, et al. Human recombinant neutralizing antibodies against hantaan virus G2 protein. Virology. 2003;308:64–73.View ArticlePubMed
  37. Zhang QF, Li JD, Li WH, et al. Development and application of a two-step MacELISA for the early diagnosis of hemorrhagic fever with renal syndrome. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2008;22(1):6–8.PubMed
  38. Zöller L, Yang S, Gött P, et al. Use of recombinant nucleocapsid proteins of the Hantaan and nephropathia epidemica serotypes of hantaviruses as immunodiagnostic antigens. J Med Virol. 1993;39(3):200–7.View ArticlePubMed
  39. Pang Z, Li A, Li J, et al. Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS One. 2014;9(4):e95635.View ArticlePubMedPubMed Central
  40. Chu YK, Rossi C, Leduc JW, et al. Serological relationships among viruses in the hantavirus genus, family Bunyaviridae. Virology. 1994;198(1):196–204.View ArticlePubMed
  41. Connor RI, Chen BK, Choe S, et al. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology. 1995;206(2):935–44.View ArticlePubMed
  42. Vaheri A, Vapalahti O, Plyusnin A. How to diagnose hantavirus infections and detect them in rodents and insectivores. Rev Med Virol. 2008;18(4):277–88.View ArticlePubMed
  43. Mattar S, Guzmán C, Figueiredo LT. Diagnosis of hantavirus infection in humans. Expert Rev Anti-Infect Ther. 2015;13(8):939–46.View ArticlePubMed
  44. Song G, Hang CS, Liao HX, et al. Antigenic difference between viral strains causing classical and mild types of epidemic hemorrhagic fever with renal syndrome in China. J Infect Dis. 1984;150(6):889–94.View ArticlePubMed
Metadata
Title
Comparison of serological assays to titrate Hantaan and Seoul hantavirus-specific antibodies
Authors
Weihong Li
Shouchun Cao
Quanfu Zhang
Jiandong Li
Shuo Zhang
Wei Wu
Jing Qu
Chuan Li
Mifang Liang
Dexin Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0799-0

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue