Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Short Paper

Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein

Authors: Mako Yanai, Madoka Sakai, Akiko Makino, Keizo Tomonaga

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N.

Results

BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV.

Conclusions

Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.
Literature
1.
go back to reference Briese T, Schneemann A, Lewis AJ, Park YS, Kim S, Ludwig H, et al. Genomic organization of Borna disease virus. Proc Natl Acad Sci U S A. 1994;91:4362–6.CrossRefPubMedPubMedCentral Briese T, Schneemann A, Lewis AJ, Park YS, Kim S, Ludwig H, et al. Genomic organization of Borna disease virus. Proc Natl Acad Sci U S A. 1994;91:4362–6.CrossRefPubMedPubMedCentral
2.
go back to reference Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin WI. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A. 1992;89:11486–9.CrossRefPubMedPubMedCentral Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin WI. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A. 1992;89:11486–9.CrossRefPubMedPubMedCentral
3.
go back to reference Hock M, Kraus I, Schoehn G, Jamin M, Andrei-Selmer C, Garten W, et al. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology. 2010;397:64–72.CrossRefPubMed Hock M, Kraus I, Schoehn G, Jamin M, Andrei-Selmer C, Garten W, et al. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology. 2010;397:64–72.CrossRefPubMed
4.
go back to reference Rudolph MG, Kraus I, Dickmanns A, Eickmann M, Garten W, Ficner R. Crystal structure of the borna disease virus nucleoprotein. Structure. 2003;11:1219–26.CrossRefPubMed Rudolph MG, Kraus I, Dickmanns A, Eickmann M, Garten W, Ficner R. Crystal structure of the borna disease virus nucleoprotein. Structure. 2003;11:1219–26.CrossRefPubMed
5.
6.
go back to reference Schwemmle M, Salvatore M, Shi L, Lee CH, Lipkin WI. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J Biol Chem. 1998;273:9007–12.CrossRefPubMed Schwemmle M, Salvatore M, Shi L, Lee CH, Lipkin WI. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J Biol Chem. 1998;273:9007–12.CrossRefPubMed
7.
go back to reference Schmid S, Mayer D, Schneider U, Schwemmle M. Functional characterization of the major and minor phosphorylation sites of the P protein of Borna disease virus. J Virol. 2007;81:5497–507.CrossRefPubMedPubMedCentral Schmid S, Mayer D, Schneider U, Schwemmle M. Functional characterization of the major and minor phosphorylation sites of the P protein of Borna disease virus. J Virol. 2007;81:5497–507.CrossRefPubMedPubMedCentral
8.
go back to reference Schneider U, Blechschmidt K, Schwemmle M, Staeheli P. Overlap of interaction domains indicates a central role of the P protein in assembly and regulation of the Borna disease virus polymerase complex. J Biol Chem. 2004;279:55290–6.CrossRefPubMed Schneider U, Blechschmidt K, Schwemmle M, Staeheli P. Overlap of interaction domains indicates a central role of the P protein in assembly and regulation of the Borna disease virus polymerase complex. J Biol Chem. 2004;279:55290–6.CrossRefPubMed
9.
go back to reference Neumann P, Lieber D, Meyer S, Dautel P, Kerth A, Kraus I, et al. Crystal structure of the Borna disease virus matrix protein (BoDV-M) reveals ssRNA binding properties. Proc Natl Acad Sci U S A. 2009;106:3710–5.CrossRefPubMedPubMedCentral Neumann P, Lieber D, Meyer S, Dautel P, Kerth A, Kraus I, et al. Crystal structure of the Borna disease virus matrix protein (BoDV-M) reveals ssRNA binding properties. Proc Natl Acad Sci U S A. 2009;106:3710–5.CrossRefPubMedPubMedCentral
10.
go back to reference Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, et al. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol. 2007;81:743–9.CrossRefPubMed Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, et al. Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol. 2007;81:743–9.CrossRefPubMed
11.
go back to reference Charlier CM, Wu Y, Allart S, Malnou CE, Schwemmle M, Gonzalez-dunia D. Analysis of Borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged P protein. J Virol. 2013;87:12339–48.CrossRefPubMedPubMedCentral Charlier CM, Wu Y, Allart S, Malnou CE, Schwemmle M, Gonzalez-dunia D. Analysis of Borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged P protein. J Virol. 2013;87:12339–48.CrossRefPubMedPubMedCentral
12.
go back to reference Kohno T, Goto T, Takasaki T, Morita C, Nakaya T, Ikuta K, et al. Fine structure and morphogenesis of Borna disease virus. J Virol. 1999;73:760–6.PubMedPubMedCentral Kohno T, Goto T, Takasaki T, Morita C, Nakaya T, Ikuta K, et al. Fine structure and morphogenesis of Borna disease virus. J Virol. 1999;73:760–6.PubMedPubMedCentral
13.
go back to reference Kobayashi T, Kamitani W, Zhang G, et al. Borna disease virus nucleoprotein requires both nuclear localization and export activities for viral nucleocytoplasmic shuttling. J Virol. 2001;75:3404–12.CrossRefPubMedPubMedCentral Kobayashi T, Kamitani W, Zhang G, et al. Borna disease virus nucleoprotein requires both nuclear localization and export activities for viral nucleocytoplasmic shuttling. J Virol. 2001;75:3404–12.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Yanai H, Kobayashi T, Hayashi Y, Ohtaki N, Zhang G, De JC, et al. A Methionine-rich domain mediates CRM1-dependent nuclear export activity of Borna disease virus phosphoprotein. J Virol. 2006;80:1121–9.CrossRefPubMedPubMedCentral Yanai H, Kobayashi T, Hayashi Y, Ohtaki N, Zhang G, De JC, et al. A Methionine-rich domain mediates CRM1-dependent nuclear export activity of Borna disease virus phosphoprotein. J Virol. 2006;80:1121–9.CrossRefPubMedPubMedCentral
17.
go back to reference Pyper JM. Gartner. Molecular basis for the differential subcellular localization of the 38- and 39-kilodalton structural proteins of Borna disease virus. J Virol. 1997;71:5133–9.PubMedPubMedCentral Pyper JM. Gartner. Molecular basis for the differential subcellular localization of the 38- and 39-kilodalton structural proteins of Borna disease virus. J Virol. 1997;71:5133–9.PubMedPubMedCentral
18.
go back to reference Berg M, Ehrenborg C, Blomberg J, Pipkorn R, Berg AL. Two domains of the Borna disease virus p40 protein are required for interaction with the p23 protein. J Gen Virol. 1998;79:2957–63.CrossRefPubMed Berg M, Ehrenborg C, Blomberg J, Pipkorn R, Berg AL. Two domains of the Borna disease virus p40 protein are required for interaction with the p23 protein. J Gen Virol. 1998;79:2957–63.CrossRefPubMed
19.
go back to reference Hitoshi N, Ken-ichi Y, Jun-ichi M. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108:193–9.CrossRef Hitoshi N, Ken-ichi Y, Jun-ichi M. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108:193–9.CrossRef
20.
go back to reference Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y, et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 2006;8:1522–9.CrossRefPubMed Yanai H, Hayashi Y, Watanabe Y, Ohtaki N, Kobayashi T, Nozaki Y, et al. Development of a novel Borna disease virus reverse genetics system using RNA polymerase II promoter and SV40 nuclear import signal. Microbes Infect. 2006;8:1522–9.CrossRefPubMed
21.
go back to reference Girard C, Mouaikel J, Neel H, Bertrand E, Bordonné R. Nuclear localization properties of a conserved protuberance in the Sm core complex. Exp Cell Res. 2004;299:199–208.CrossRefPubMed Girard C, Mouaikel J, Neel H, Bertrand E, Bordonné R. Nuclear localization properties of a conserved protuberance in the Sm core complex. Exp Cell Res. 2004;299:199–208.CrossRefPubMed
22.
go back to reference Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRefPubMedPubMedCentral Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRefPubMedPubMedCentral
23.
go back to reference Daito T, Fujino K, Honda T, Matsumoto Y, Watanabe Y, Tomonaga K. A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol. 2011;85:12170–8.CrossRefPubMedPubMedCentral Daito T, Fujino K, Honda T, Matsumoto Y, Watanabe Y, Tomonaga K. A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol. 2011;85:12170–8.CrossRefPubMedPubMedCentral
24.
go back to reference Matsumoto Y, Ohta K, Kolakofsky D, Nishio M. A point mutation in the RNA-binding domain of human parainfluenza virus type 2 nucleoprotein elicits an abnormally enhanced polymerase activity. J Virol. 2017; doi:10.1128/JVI.02203-16. Matsumoto Y, Ohta K, Kolakofsky D, Nishio M. A point mutation in the RNA-binding domain of human parainfluenza virus type 2 nucleoprotein elicits an abnormally enhanced polymerase activity. J Virol. 2017; doi:10.​1128/​JVI.​02203-16.
Metadata
Title
Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein
Authors
Mako Yanai
Madoka Sakai
Akiko Makino
Keizo Tomonaga
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0793-6

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue