Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Zika vector transmission risk in temperate Australia: a vector competence study

Authors: Jean-Bernard Duchemin, Peter T. Mee, Stacey E. Lynch, Ravikiran Vedururu, Lee Trinidad, Prasad Paradkar

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species.

Methods

Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR.

Results

Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency.

Conclusions

The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.
Literature
1.
go back to reference Weinbren MP, Williams MC. Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Trans R Soc Trop Med Hyg. 1958;52:263–8.CrossRefPubMed Weinbren MP, Williams MC. Zika virus: further isolations in the Zika area, and some studies on the strains isolated. Trans R Soc Trop Med Hyg. 1958;52:263–8.CrossRefPubMed
2.
go back to reference Boorman JP, Porterfield JS. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans R Soc Trop Med Hyg. 1956;50:238–42.CrossRefPubMed Boorman JP, Porterfield JS. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans R Soc Trop Med Hyg. 1956;50:238–42.CrossRefPubMed
3.
go back to reference Cornet M, Robin Y, Adam C, Valade M, Calvo MA. Transmission expérimentale comparée du virus amaril et du virus Zika chez Aedes aegypti L. (S). Cah ORSTOM, sér Etat méd et Parasitol. 1979;17:47–53. Cornet M, Robin Y, Adam C, Valade M, Calvo MA. Transmission expérimentale comparée du virus amaril et du virus Zika chez Aedes aegypti L. (S). Cah ORSTOM, sér Etat méd et Parasitol. 1979;17:47–53.
4.
go back to reference Lee VH, Moore DL. Vectors of the 1969 yellow fever epidemic on the Jos plateau, Nigeria. Bull World Health Organ. 1972;46:669–73.PubMedPubMedCentral Lee VH, Moore DL. Vectors of the 1969 yellow fever epidemic on the Jos plateau, Nigeria. Bull World Health Organ. 1972;46:669–73.PubMedPubMedCentral
5.
go back to reference Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg. 1969;18:411–5.CrossRefPubMed Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg. 1969;18:411–5.CrossRefPubMed
6.
go back to reference Olson JG, Ksiazek TG, Suhandiman, Triwibowo. Zika virus, a cause of fever in central java, Indonesia. Trans R Soc Trop Med Hyg. 1981;75:389–93.CrossRefPubMed Olson JG, Ksiazek TG, Suhandiman, Triwibowo. Zika virus, a cause of fever in central java, Indonesia. Trans R Soc Trop Med Hyg. 1981;75:389–93.CrossRefPubMed
7.
8.
go back to reference Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013;7:e2348.CrossRefPubMedPubMedCentral Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013;7:e2348.CrossRefPubMedPubMedCentral
9.
go back to reference Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR:. Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR:. Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9.
10.
go back to reference Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al: Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al: Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.
11.
go back to reference Dupont-Rouzeyrol M, O’Connor O, Calvez E, Daurès M, John M, Grangeon JP, Gourinat AC: Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg Infect Dis. 2015;21:381–2. Dupont-Rouzeyrol M, O’Connor O, Calvez E, Daurès M, John M, Grangeon JP, Gourinat AC: Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg Infect Dis. 2015;21:381–2.
12.
go back to reference Ledermann JP, Guillaumot L, Yug L, Saweyog SC, Tided M, Machieng P, Pretrick M, Marfel M, Griggs A, Bel M, et al: Aedes hensilli as a potential vector of Chikungunya and Zika viruses. PLoS Negl Trop Dis. 2014;8:e3188. Ledermann JP, Guillaumot L, Yug L, Saweyog SC, Tided M, Machieng P, Pretrick M, Marfel M, Griggs A, Bel M, et al: Aedes hensilli as a potential vector of Chikungunya and Zika viruses. PLoS Negl Trop Dis. 2014;8:e3188.
13.
go back to reference Richard V, Paoaafaite T, Cao-Lormeau VM. Vector competence of French Polynesian Aedes aegypti and Aedes Polynesiensis for Zika virus. PLoS Negl Trop Dis. 2016;10:e0005024.CrossRefPubMedPubMedCentral Richard V, Paoaafaite T, Cao-Lormeau VM. Vector competence of French Polynesian Aedes aegypti and Aedes Polynesiensis for Zika virus. PLoS Negl Trop Dis. 2016;10:e0005024.CrossRefPubMedPubMedCentral
14.
go back to reference Duschinka RD, Guedes DRD, Paiva MHS, Donato MMA, Barbosa PP, Krokovsky L, dos S. Rocha SW, Saraiva KLA, Crespo MM, Barbosa RMR, et al: Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. 2016. https://doi.org/10.1101/073197 Duschinka RD, Guedes DRD, Paiva MHS, Donato MMA, Barbosa PP, Krokovsky L, dos S. Rocha SW, Saraiva KLA, Crespo MM, Barbosa RMR, et al: Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. 2016. https://​doi.​org/​10.​1101/​073197
15.
go back to reference Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, Lourenço-de-Oliveira R, Failloux AB: Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis. 2016;10:e0004543. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, Lourenço-de-Oliveira R, Failloux AB: Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis. 2016;10:e0004543.
16.
go back to reference Fernandes RS, Campos SS, Ferreira-de-Brito A, Miranda RMd, Barbosa da Silva KA, Castro MGd, Raphae LMS, Brasil P, Failloux AB, Bonaldo MC, Lourenço-de-Oliveira R. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl Trop Dis. 2016;10(9):e0004993. Fernandes RS, Campos SS, Ferreira-de-Brito A, Miranda RMd, Barbosa da Silva KA, Castro MGd, Raphae LMS, Brasil P, Failloux AB, Bonaldo MC, Lourenço-de-Oliveira R. Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus. PLoS Negl Trop Dis. 2016;10(9):e0004993.
17.
go back to reference Guo XX, Li CX, Deng YQ, Xing D, Liu QM, Wu Q, Sun AJ, Dong YD, Cao WC, Qin CF, Zhao TY: Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerging Microbes & Infections. 2016;5:e102. Guo XX, Li CX, Deng YQ, Xing D, Liu QM, Wu Q, Sun AJ, Dong YD, Cao WC, Qin CF, Zhao TY: Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerging Microbes & Infections. 2016;5:e102.
18.
go back to reference Hall-Mendelin S, Pyke AT, Moore PR, Mackay IM, McMahon JL, Ritchie SA, Taylor CT, Moore FAJ, AF vdH: Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia. PLoS Negl Trop Dis. 2016;10:e0004959. Hall-Mendelin S, Pyke AT, Moore PR, Mackay IM, McMahon JL, Ritchie SA, Taylor CT, Moore FAJ, AF vdH: Assessment of local mosquito species incriminates Aedes aegypti as the potential vector of Zika virus in Australia. PLoS Negl Trop Dis. 2016;10:e0004959.
19.
go back to reference Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M, Failloux AB. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill. 2016;21(35). Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M, Failloux AB. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill. 2016;21(35).
20.
go back to reference Pyke AT, Daly MT, Cameron JN, Moore PR, Taylor CT, Hewitson GR, Humphreys JL, R. G: Imported Zika virus infection from the Cook Islands into Australia, 2014. PLOS Currents Outbreaks. 2014;6:1–8. Pyke AT, Daly MT, Cameron JN, Moore PR, Taylor CT, Hewitson GR, Humphreys JL, R. G: Imported Zika virus infection from the Cook Islands into Australia, 2014. PLOS Currents Outbreaks. 2014;6:1–8.
21.
go back to reference Gyawali N, Bradbury RS, AW. Taylor-Robinson AW The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect Dis Poverty. 2016;5:37. Gyawali N, Bradbury RS, AW. Taylor-Robinson AW The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect Dis Poverty. 2016;5:37.
22.
go back to reference Nah K, Mizumoto K, Miyamatsu Y, Yasuda Y, Kinoshita R, Nishiura H. Estimating risks of importation and local transmission of Zika virus infection. PeerJ. 2016;4:e1904.CrossRefPubMedPubMedCentral Nah K, Mizumoto K, Miyamatsu Y, Yasuda Y, Kinoshita R, Nishiura H. Estimating risks of importation and local transmission of Zika virus infection. PeerJ. 2016;4:e1904.CrossRefPubMedPubMedCentral
23.
go back to reference Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.CrossRef Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44.CrossRef
24.
go back to reference Knope KE, Kurucz N, Doggett SL, Muller M, Johansen CA, Feldman R, Hobby M, Bennett S, Sly A, Lynch S, et al: Arboviral diseases and malaria in Australia, 2012-13: annual report of the National Arbovirus and malaria advisory committee. Commun Dis Intell Q Rep. 2016;40:E17–47. Knope KE, Kurucz N, Doggett SL, Muller M, Johansen CA, Feldman R, Hobby M, Bennett S, Sly A, Lynch S, et al: Arboviral diseases and malaria in Australia, 2012-13: annual report of the National Arbovirus and malaria advisory committee. Commun Dis Intell Q Rep. 2016;40:E17–47.
25.
go back to reference Guzzetta G, Poletti P, Montarsi F, Baldacchino F, Capelli G, Rizzoli A, Rosà R, Merler S: Assessing the potential risk of .Zika virus epidemics in temperate areas with established Aedes albopictus populations. Euro Surveill. 2016;21:30199. Guzzetta G, Poletti P, Montarsi F, Baldacchino F, Capelli G, Rizzoli A, Rosà R, Merler S: Assessing the potential risk of .Zika virus epidemics in temperate areas with established Aedes albopictus populations. Euro Surveill. 2016;21:30199.
26.
go back to reference Di Luca M, Severini F, Toma L, Boccolini D, Romi R, Remoli ME, Sabbatucci M, Rizzo C, Venturi G, Rezza G, Fortuna C: Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill. 2016;21:30223. Di Luca M, Severini F, Toma L, Boccolini D, Romi R, Remoli ME, Sabbatucci M, Rizzo C, Venturi G, Rezza G, Fortuna C: Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill. 2016;21:30223.
28.
go back to reference Hedges L, Brownlie J, O'Neill S, Johnson K. Wolbachia and virus protection in insects. Science. 2008;322:702.CrossRefPubMed Hedges L, Brownlie J, O'Neill S, Johnson K. Wolbachia and virus protection in insects. Science. 2008;322:702.CrossRefPubMed
29.
go back to reference McDonald G, Smith R, Shelden G. Laboratory rearing of Culex annulirostris Skuse (Diptera, Culicidae). J Aust ent Soc. 1977;16:353–8.CrossRef McDonald G, Smith R, Shelden G. Laboratory rearing of Culex annulirostris Skuse (Diptera, Culicidae). J Aust ent Soc. 1977;16:353–8.CrossRef
30.
go back to reference Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 is pro-viral during West Nile virus infection of Culex mosquitoes. PLoS Pathog. 2015;11:e1005143.CrossRefPubMedPubMedCentral Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 is pro-viral during West Nile virus infection of Culex mosquitoes. PLoS Pathog. 2015;11:e1005143.CrossRefPubMedPubMedCentral
31.
go back to reference Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, Reyes D, Vasilakis N, Heang V, Weaver SC, et al: Complete genome sequences of five Zika virus isolates. Genome Announc. 2016;4:e00377–16. Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, Reyes D, Vasilakis N, Heang V, Weaver SC, et al: Complete genome sequences of five Zika virus isolates. Genome Announc. 2016;4:e00377–16.
32.
33.
34.
go back to reference Reed LJ, Muench H. A simple method of estimating fifty per cent endpoint. Am J Hyg. 1938;27:493–7. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoint. Am J Hyg. 1938;27:493–7.
35.
go back to reference Mee PT, Weeks AR, Walker PJ, Hoffmann AA, Duchemin JB. Detection of low-level Cardinium and Wolbachia infections in Culicoides. Appl Environ Microbiol. 2015;81:6177–88.CrossRefPubMedPubMedCentral Mee PT, Weeks AR, Walker PJ, Hoffmann AA, Duchemin JB. Detection of low-level Cardinium and Wolbachia infections in Culicoides. Appl Environ Microbiol. 2015;81:6177–88.CrossRefPubMedPubMedCentral
36.
go back to reference Russell R. A review of the status and significance of the species within the Culex pipiens group in Australia. J Am Mosq Control Assoc. 2012;28:24–7.CrossRefPubMed Russell R. A review of the status and significance of the species within the Culex pipiens group in Australia. J Am Mosq Control Assoc. 2012;28:24–7.CrossRefPubMed
37.
38.
go back to reference Jansen CC, Webb CE, Northill JA, Ritchie SA, Russell RC, Van Den Hurk AF. Vector competence of Australian mosquito species for a north American strain of West Nile virus. Vector-Borne and Zoonotic Diseases. 2008;8:805–11.CrossRefPubMed Jansen CC, Webb CE, Northill JA, Ritchie SA, Russell RC, Van Den Hurk AF. Vector competence of Australian mosquito species for a north American strain of West Nile virus. Vector-Borne and Zoonotic Diseases. 2008;8:805–11.CrossRefPubMed
39.
go back to reference Hemmerter S, Šlapeta J, Beebe N. Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol. 2009;50:317–25.CrossRefPubMed Hemmerter S, Šlapeta J, Beebe N. Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Mol Phylogenet Evol. 2009;50:317–25.CrossRefPubMed
40.
go back to reference Ye YH, Chenoweth SF, Carrasco AM, Allen SL, Frentiu FD, van den Hurk AF, Beebe NW, EA. M: Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution. 2016;70:2459–69. Ye YH, Chenoweth SF, Carrasco AM, Allen SL, Frentiu FD, van den Hurk AF, Beebe NW, EA. M: Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution. 2016;70:2459–69.
41.
go back to reference Endersby NM, White VL, Chan J, Hurst T, Rašic G, Miller A, AA H: Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infect Genet Evol. 2013;18:191–201. Endersby NM, White VL, Chan J, Hurst T, Rašic G, Miller A, AA H: Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infect Genet Evol. 2013;18:191–201.
42.
go back to reference Skelton E, Rances E, Frentiu FD, Kusmintarsih ES, Iturbe-Ormaetxe I, Caragata EP EP, Woolfit M, O’Neill SL: A native Wolbachia Endosymbiont does not limit dengue virus infection in the mosquito Aedes notoscriptus (Diptera: Culicidae). J Med Entomol. 2016;53:401–8. Skelton E, Rances E, Frentiu FD, Kusmintarsih ES, Iturbe-Ormaetxe I, Caragata EP EP, Woolfit M, O’Neill SL: A native Wolbachia Endosymbiont does not limit dengue virus infection in the mosquito Aedes notoscriptus (Diptera: Culicidae). J Med Entomol. 2016;53:401–8.
43.
go back to reference Peterson AT, Campbell LP. Global potential distribution of the mosquito Aedes notoscriptus, a new alien species in the United States. Journal of Vector Ecology. 2015;40:191–4.CrossRefPubMed Peterson AT, Campbell LP. Global potential distribution of the mosquito Aedes notoscriptus, a new alien species in the United States. Journal of Vector Ecology. 2015;40:191–4.CrossRefPubMed
44.
go back to reference van den Hurk AF, McElroy K, Pyke AT, McGee CE, Hall-Mendelin S, Day A, Ryan PA, Ritchie SA, Vanlandingham DL, Higgs S: Vector competence of Australian mosquitoes for yellow fever virus. Am J Trop Med Hyg. 2011;85:446–51. van den Hurk AF, McElroy K, Pyke AT, McGee CE, Hall-Mendelin S, Day A, Ryan PA, Ritchie SA, Vanlandingham DL, Higgs S: Vector competence of Australian mosquitoes for yellow fever virus. Am J Trop Med Hyg. 2011;85:446–51.
45.
go back to reference Russell R, Mukwaya L, Lule M. Laboratory studies on the transmission of yellow fever virus by Aedes (Finlaya) notoscriptus (Dipt., Culicidae). Aust J Exp Biol Med Sci. 1977;55:649–51.CrossRefPubMed Russell R, Mukwaya L, Lule M. Laboratory studies on the transmission of yellow fever virus by Aedes (Finlaya) notoscriptus (Dipt., Culicidae). Aust J Exp Biol Med Sci. 1977;55:649–51.CrossRefPubMed
46.
go back to reference Watson TM, Kay BH. Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol. 1999;36:508–14.CrossRefPubMed Watson TM, Kay BH. Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol. 1999;36:508–14.CrossRefPubMed
47.
go back to reference Kay BH, Boyd AM, Ryan PA, Hall RA. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg. 2007;76:417–23.PubMed Kay BH, Boyd AM, Ryan PA, Hall RA. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg. 2007;76:417–23.PubMed
48.
go back to reference Watson T, Saul A, Kay B. Aedes notoscriptus (Diptera: Culicidae) survival and dispersal estimated by mark-release-recapture in Brisbane, Queensland, Australia. J Med Entomol. 2000;37:380–4.CrossRefPubMed Watson T, Saul A, Kay B. Aedes notoscriptus (Diptera: Culicidae) survival and dispersal estimated by mark-release-recapture in Brisbane, Queensland, Australia. J Med Entomol. 2000;37:380–4.CrossRefPubMed
49.
go back to reference Dobrotworsky N. The mosquitoes of Victoria. Carlton: Melbourne University Press; 1965. Dobrotworsky N. The mosquitoes of Victoria. Carlton: Melbourne University Press; 1965.
50.
go back to reference Johnston E, Weinstein P, Slaney D, Flies AS, Fricker S, Williams C. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. Journal of Vector Ecology. 2014;39:48–55.CrossRefPubMed Johnston E, Weinstein P, Slaney D, Flies AS, Fricker S, Williams C. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. Journal of Vector Ecology. 2014;39:48–55.CrossRefPubMed
51.
go back to reference Ballard JW, Marshall ID. An investigation of the potential of Aedes camptorhynchus (Thom.) as a vector of Ross River virus. Aust J Exp Biol Med Sci. 1986;64:197–200.CrossRefPubMed Ballard JW, Marshall ID. An investigation of the potential of Aedes camptorhynchus (Thom.) as a vector of Ross River virus. Aust J Exp Biol Med Sci. 1986;64:197–200.CrossRefPubMed
52.
go back to reference Dhileepan K, Azuolas JK, Gibson CA. Evidence of vertical transmission of Ross River and Sindbis viruses (Togaviridae: Alphavirus) by mosquitoes (Diptera: Culicidae) in southeastern Australia. J Med Entomol. 1996;33:180–2.CrossRefPubMed Dhileepan K, Azuolas JK, Gibson CA. Evidence of vertical transmission of Ross River and Sindbis viruses (Togaviridae: Alphavirus) by mosquitoes (Diptera: Culicidae) in southeastern Australia. J Med Entomol. 1996;33:180–2.CrossRefPubMed
53.
go back to reference Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis. 2016;16:522–3.CrossRefPubMed Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis. 2016;16:522–3.CrossRefPubMed
54.
go back to reference Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, Jiolle D, Fontenille D, Paupy C, Leroy EM: Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8:e2681. Grard G, Caron M, Mombo IM, Nkoghe D, Ondo SM, Jiolle D, Fontenille D, Paupy C, Leroy EM: Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8:e2681.
Metadata
Title
Zika vector transmission risk in temperate Australia: a vector competence study
Authors
Jean-Bernard Duchemin
Peter T. Mee
Stacey E. Lynch
Ravikiran Vedururu
Lee Trinidad
Prasad Paradkar
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0772-y

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue