Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Iron availability affects West Nile virus infection in its mosquito vector

Authors: Jean-Bernard Duchemin, Prasad N Paradkar

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Mosquitoes are responsible for transmission of viruses, including dengue, West Nile and chikungunya viruses. Female mosquitoes are infected when they blood-feed on vertebrates, a required step for oogenesis. During this process, mosquitoes encounter high iron loads. Since iron is an essential nutrient for most organisms, including pathogens, one of the defense mechanisms for the host includes sequestration of iron away from the invading pathogen. Here, we determine whether iron availability affects viral replication in mosquitoes.

Methods

To elucidate effect of iron availability on mosquito cells during infection, Culex cells were treated with either ferric ammonium citrate (FAC) or the iron chelator, deferoxamine (DFX). Real time RT-PCR was performed using ferritin (heavy chain) and NRAMP as a measure of iron homeostasis in cells. To determine iron requirement for viral replication, Culex cells were knocked down for NRAMP using dsRNA. Finally, the results were validated in Culex mosquito-infection model, by treating infected mosquitoes with DFX to reduce iron levels.

Results

Our results show that infection of Culex cells led to induction in levels of ferritin (heavy chain) and NRAMP mRNAs in time-dependent manner. Results also showed that treatment of cells with FAC, reduced expression of NRAMP (iron transporter) and increase levels of ferritin (heavy chain). Interestingly, increasing iron levels increased viral titers; while reducing intracellular iron levels, either by NRAMP knock-down or using DFX, reduced viral titers. The results from Culex mosquito infection showed that mosquitoes treated with DFX had reduced viral titers compared with untreated controls in midgut as well as carcass 8 days pi. Saliva from mosquitoes treated with DFX also showed reduced viral titers compared with untreated controls, indicating low viral transmission capacity.

Conclusions

Our results indicate that iron is required for viral replication in mosquito cells. Mosquitoes respond to viral infection, by inducing expression of heavy chain ferritin, which sequesters available iron, reducing its availability to virus infected cells. The data indicates that heavy chain ferritin may be part of an immune mechanism of mosquitoes in response to viral infections.
Literature
1.
go back to reference Gubler DJ, Meltzer M. Impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res. 1999;53:35–70.CrossRefPubMed Gubler DJ, Meltzer M. Impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res. 1999;53:35–70.CrossRefPubMed
2.
go back to reference Randolph SE, Rogers DJ. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol. 2010;8(5):361–71.CrossRefPubMed Randolph SE, Rogers DJ. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol. 2010;8(5):361–71.CrossRefPubMed
3.
4.
go back to reference Conway MJ, Colpitts TM, Fikrig E. Role of the Vector in Arbovirus Transmission. Annu Rev Virol. 2014;1(1):71–88.CrossRefPubMed Conway MJ, Colpitts TM, Fikrig E. Role of the Vector in Arbovirus Transmission. Annu Rev Virol. 2014;1(1):71–88.CrossRefPubMed
5.
go back to reference Attardo GM, Hansen IA, Raikhel AS. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol. 2005;35(7):661–75.CrossRefPubMed Attardo GM, Hansen IA, Raikhel AS. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol. 2005;35(7):661–75.CrossRefPubMed
6.
go back to reference Geiser DL, Chavez CA, Flores-Munguia R, Winzerling JJ, Pham DQ. Aedes aegypti ferritin. Eur J Biochem. 2003;270(18):3667–74.CrossRefPubMed Geiser DL, Chavez CA, Flores-Munguia R, Winzerling JJ, Pham DQ. Aedes aegypti ferritin. Eur J Biochem. 2003;270(18):3667–74.CrossRefPubMed
7.
go back to reference Zhou G, Kohlhepp P, Geiser D, Frasquillo Mdel C, Vazquez-Moreno L, Winzerling JJ. Fate of blood meal iron in mosquitoes. J Insect Physiol. 2007;53(11):1169–78.CrossRefPubMedPubMedCentral Zhou G, Kohlhepp P, Geiser D, Frasquillo Mdel C, Vazquez-Moreno L, Winzerling JJ. Fate of blood meal iron in mosquitoes. J Insect Physiol. 2007;53(11):1169–78.CrossRefPubMedPubMedCentral
9.
go back to reference Andrews NC. Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet. 2000;1:75–98.CrossRefPubMed Andrews NC. Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet. 2000;1:75–98.CrossRefPubMed
10.
go back to reference Kaplan J. Mechanisms of cellular iron acquisition: another iron in the fire. Cell. 2002;111(5):603–6.CrossRefPubMed Kaplan J. Mechanisms of cellular iron acquisition: another iron in the fire. Cell. 2002;111(5):603–6.CrossRefPubMed
12.
go back to reference Geiser DL, Mayo JJ, Winzerling JJ. The unique regulation of Aedes aegypti larval cell ferritin by iron. Insect Biochem Mol Biol. 2007;37(5):418–29.CrossRefPubMed Geiser DL, Mayo JJ, Winzerling JJ. The unique regulation of Aedes aegypti larval cell ferritin by iron. Insect Biochem Mol Biol. 2007;37(5):418–29.CrossRefPubMed
13.
14.
go back to reference Geiser DL, Zhang D, Winzerling JJ. Secreted ferritin: mosquito defense against iron overload? Insect Biochem Mol Biol. 2006;36(3):177–87.CrossRefPubMed Geiser DL, Zhang D, Winzerling JJ. Secreted ferritin: mosquito defense against iron overload? Insect Biochem Mol Biol. 2006;36(3):177–87.CrossRefPubMed
15.
go back to reference Martinez-Barnetche J, Garcia Solache M, Neri Lecona A, Tello Lopez AT, del Carmen RM, Gamba G, et al. Cloning and functional characterization of the Anopheles albimanus DMT1/NRAMP homolog: implications in iron metabolism in mosquitoes. Insect Biochem Mol Biol. 2007;37(6):532–9.CrossRefPubMed Martinez-Barnetche J, Garcia Solache M, Neri Lecona A, Tello Lopez AT, del Carmen RM, Gamba G, et al. Cloning and functional characterization of the Anopheles albimanus DMT1/NRAMP homolog: implications in iron metabolism in mosquitoes. Insect Biochem Mol Biol. 2007;37(6):532–9.CrossRefPubMed
16.
go back to reference Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, et al. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe. 2011;10(2):97–104.CrossRefPubMedPubMedCentral Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, et al. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe. 2011;10(2):97–104.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–3.CrossRefPubMed Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–3.CrossRefPubMed
20.
go back to reference Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.CrossRefPubMed Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.CrossRefPubMed
21.
go back to reference Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits intracellular bacterial growth in macrophages. Blood. 2008;112(3):866–74.CrossRefPubMedPubMedCentral Paradkar PN, De Domenico I, Durchfort N, Zohn I, Kaplan J, Ward DM. Iron depletion limits intracellular bacterial growth in macrophages. Blood. 2008;112(3):866–74.CrossRefPubMedPubMedCentral
22.
go back to reference Georgiou NA, van der Bruggen T, Oudshoorn M, Nottet HS, Marx JJ, van Asbeck BS. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis. 2000;181(2):484–90.CrossRefPubMed Georgiou NA, van der Bruggen T, Oudshoorn M, Nottet HS, Marx JJ, van Asbeck BS. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis. 2000;181(2):484–90.CrossRefPubMed
23.
go back to reference Bartolomei G, Cevik RE, Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J Gen Virol. 2011;92(Pt 9):2072–81.CrossRefPubMed Bartolomei G, Cevik RE, Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J Gen Virol. 2011;92(Pt 9):2072–81.CrossRefPubMed
24.
go back to reference Theurl I, Zoller H, Obrist P, Datz C, Bachmann F, Elliott RM, et al. Iron regulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J Infect Dis. 2004;190(4):819–25.CrossRefPubMed Theurl I, Zoller H, Obrist P, Datz C, Bachmann F, Elliott RM, et al. Iron regulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J Infect Dis. 2004;190(4):819–25.CrossRefPubMed
25.
go back to reference Yoshiga T, Hernandez VP, Fallon AM, Law JH. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc Natl Acad Sci U S A. 1997;94(23):12337–42.CrossRefPubMedPubMedCentral Yoshiga T, Hernandez VP, Fallon AM, Law JH. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc Natl Acad Sci U S A. 1997;94(23):12337–42.CrossRefPubMedPubMedCentral
26.
go back to reference Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 Is Pro-Viral during West Nile Virus Infection of Culex Mosquitoes. PLoS Pathog. 2015;11(9):e1005143.CrossRefPubMedPubMedCentral Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 Is Pro-Viral during West Nile Virus Infection of Culex Mosquitoes. PLoS Pathog. 2015;11(9):e1005143.CrossRefPubMedPubMedCentral
27.
go back to reference Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci U S A. 2012;109(46):18915–20.CrossRefPubMedPubMedCentral Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci U S A. 2012;109(46):18915–20.CrossRefPubMedPubMedCentral
28.
go back to reference Arita A, Tadai K, Shinoda S. Rapid regulation of intestinal divalent metal (cation) transporter 1 (DMT1/DCT1) and ferritin mRNA expression in response to excess iron loading in iron-deficient rats. Biosci Biotechnol Biochem. 2010;74(3):655–8.CrossRefPubMed Arita A, Tadai K, Shinoda S. Rapid regulation of intestinal divalent metal (cation) transporter 1 (DMT1/DCT1) and ferritin mRNA expression in response to excess iron loading in iron-deficient rats. Biosci Biotechnol Biochem. 2010;74(3):655–8.CrossRefPubMed
29.
go back to reference Paradkar PN, Duchemin JB, Voysey R, Walker PJ. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl Trop Dis. 2014;8(4):e2823.CrossRefPubMedPubMedCentral Paradkar PN, Duchemin JB, Voysey R, Walker PJ. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl Trop Dis. 2014;8(4):e2823.CrossRefPubMedPubMedCentral
30.
go back to reference Dunkov BC, Georgieva T, Yoshiga T, Hall M, Law JH. Aedes aegypti ferritin heavy chain homologue: feeding of iron or blood influences message levels, lengths and subunit abundance. J Insect Sci. 2002;2:7.CrossRefPubMedPubMedCentral Dunkov BC, Georgieva T, Yoshiga T, Hall M, Law JH. Aedes aegypti ferritin heavy chain homologue: feeding of iron or blood influences message levels, lengths and subunit abundance. J Insect Sci. 2002;2:7.CrossRefPubMedPubMedCentral
31.
go back to reference Bottino-Rojas V, Talyuli OA, Jupatanakul N, Sim S, Dimopoulos G, Venancio TM, et al. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti. PLoS One. 2015;10(8):e0135985.CrossRefPubMedPubMedCentral Bottino-Rojas V, Talyuli OA, Jupatanakul N, Sim S, Dimopoulos G, Venancio TM, et al. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti. PLoS One. 2015;10(8):e0135985.CrossRefPubMedPubMedCentral
32.
go back to reference Geiser DL, Zhou G, Mayo JJ, Winzerling JJ: The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti Insect Sci 2013, 20(5):601-619. Geiser DL, Zhou G, Mayo JJ, Winzerling JJ: The effect of bacterial challenge on ferritin regulation in the yellow fever mosquito, Aedes aegypti Insect Sci 2013, 20(5):601-619.
33.
go back to reference Mann KV, Picciotti MA, Spevack TA, Durbin DR. Management of acute iron overdose. Clin Pharm. 1989;8(6):428–40.PubMed Mann KV, Picciotti MA, Spevack TA, Durbin DR. Management of acute iron overdose. Clin Pharm. 1989;8(6):428–40.PubMed
34.
go back to reference Moeschlin S, Schnider U. Treatment of Primary and Secondary Hemochromatosis and Acute Iron Poisoning with a New, Potent Iron-Eliminating Agent (Desferrioxamine-B). New England Journal of Medicine. 1963;269(2):57.CrossRef Moeschlin S, Schnider U. Treatment of Primary and Secondary Hemochromatosis and Acute Iron Poisoning with a New, Potent Iron-Eliminating Agent (Desferrioxamine-B). New England Journal of Medicine. 1963;269(2):57.CrossRef
35.
go back to reference Thompson CC, Carabeo RA. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis. Front Microbiol. 2011;2:20.CrossRefPubMedPubMedCentral Thompson CC, Carabeo RA. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis. Front Microbiol. 2011;2:20.CrossRefPubMedPubMedCentral
36.
go back to reference Costagliola DG, Girot R, Rebulla P, Lefrere JJ. Incidence of AIDS in HIV-1 infected thalassaemia patients. European and Mediterranean W.H.O. Working Group on Haemoglobinopathies and Cooleycare. Br J Haematol. 1992;81(1):109–12.CrossRefPubMed Costagliola DG, Girot R, Rebulla P, Lefrere JJ. Incidence of AIDS in HIV-1 infected thalassaemia patients. European and Mediterranean W.H.O. Working Group on Haemoglobinopathies and Cooleycare. Br J Haematol. 1992;81(1):109–12.CrossRefPubMed
37.
go back to reference Romeo AM, Christen L, Niles EG, Kosman DJ. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J Biol Chem. 2001;276(26):24301–8.CrossRefPubMed Romeo AM, Christen L, Niles EG, Kosman DJ. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J Biol Chem. 2001;276(26):24301–8.CrossRefPubMed
38.
go back to reference Bonkovsky HL, Banner BF, Rothman AL. Iron and chronic viral hepatitis. Hepatology. 1997;25(3):759–68.CrossRefPubMed Bonkovsky HL, Banner BF, Rothman AL. Iron and chronic viral hepatitis. Hepatology. 1997;25(3):759–68.CrossRefPubMed
Metadata
Title
Iron availability affects West Nile virus infection in its mosquito vector
Authors
Jean-Bernard Duchemin
Prasad N Paradkar
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0770-0

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue