Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Intranasal immunization of pigs with porcine reproductive and respiratory syndrome virus-like particles plus 2′, 3′-cGAMP VacciGrade™ adjuvant exacerbates viremia after virus challenge

Authors: Alexandria Van Noort, April Nelsen, Angela E. Pillatzki, Diego G. Diel, Feng Li, Eric Nelson, Xiuqing Wang

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in pregnant sows and acute respiratory disease in young pigs. It is a leading infectious agent of swine respiratory complex, which has significant negative economic impact on the swine industry. Commercial markets currently offer both live attenuated and killed vaccines; however, increasing controversy exists about their efficacy providing complete protection. Virus-like particles (VLPs) possess many desirable features of a potent vaccine candidate and have been proven to be highly immunogenic and protective against virus infections. Here we explored the efficacy of PRRSV VLPs together with the use of a novel 2′, 3′-cGAMP VacciGrade™ adjuvant.

Methods

Animals were immunized twice intranasally with phosphate buffered saline (PBS), PRRSV VLPs, or PRRSV VLPs plus 2′, 3′-cGAMP VacciGrade™ at 2 weeks apart. Animals were challenged with PRRSV-23983 at 2 weeks post the second immunization. PRRSV specific antibody response and cytokines were measured. Viremia, clinical signs, and histological lesions were evaluated.

Results

PRRSV N protein specific antibody was detected in all animals at day 10 after challenge, but no significant difference was observed among the vaccinated and control groups. Surprisingly, a significantly higher viremia was observed in the VLPs and VLPs plus the adjuvant groups compared to the control group. The increased viremia is correlated with a higher interferon-α induction in the serum of the VLPs and the VLPs plus the adjuvant groups.

Conclusions

Intranasal immunizations of pigs with PRRSV VLPs and VLPs plus the 2′, 3′-cGAMP VacciGrade™ adjuvant exacerbates viremia. A higher level of interferon-α production, but not interferon-γ and IL-10, is correlated with enhanced virus replication. Overall, PRRSV VLPs and PRRSV VLPs plus the adjuvant fail to provide protection against PRRSV challenge. Different dose of VLPs and alternative route of vaccination such as intramuscular injection should be explored in the future studies to fully assess the feasibility of such a vaccine platform for PRRSV control and prevention.
Literature
1.
go back to reference Allende R, Laegreid WW, Kutish GF, Galeota JA, Wills RW, Osorio FA. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection. J Virol. 2000;74:10834–7.CrossRefPubMedPubMedCentral Allende R, Laegreid WW, Kutish GF, Galeota JA, Wills RW, Osorio FA. Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection. J Virol. 2000;74:10834–7.CrossRefPubMedPubMedCentral
2.
go back to reference Ayithan N, Bradfute SB, Anthony SM, Stuthman KS, Dye JM, Bavari S, Bray M, Ozato K. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways. J Interferon Cytokine Res. 2014;34:79–89.CrossRefPubMedPubMedCentral Ayithan N, Bradfute SB, Anthony SM, Stuthman KS, Dye JM, Bavari S, Bray M, Ozato K. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways. J Interferon Cytokine Res. 2014;34:79–89.CrossRefPubMedPubMedCentral
3.
go back to reference Binjawadagi B, Lakshmanappa YS, Longchao Z, Dhakal S, Hiremath J, Ouyang K, Shyu DL, Arcos J, Pengcheng S, Gilbertie A, Zuckermann F, Torrelles JB, Jackwood D, Fang Y, Renukaradhya GJ. Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol. 2016;161:1579–89.CrossRefPubMed Binjawadagi B, Lakshmanappa YS, Longchao Z, Dhakal S, Hiremath J, Ouyang K, Shyu DL, Arcos J, Pengcheng S, Gilbertie A, Zuckermann F, Torrelles JB, Jackwood D, Fang Y, Renukaradhya GJ. Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol. 2016;161:1579–89.CrossRefPubMed
4.
go back to reference Blaauboer SM, Mansouri S, Tucker HR, Wang HL, Gabrielle VD, Jin L. The mucosal adjuvant cyclic di-GMP enhances antigen uptake and selectively activates pinocytosis-efficient cells in vivo. elife. 2015;4. Blaauboer SM, Mansouri S, Tucker HR, Wang HL, Gabrielle VD, Jin L. The mucosal adjuvant cyclic di-GMP enhances antigen uptake and selectively activates pinocytosis-efficient cells in vivo. elife. 2015;4.
5.
go back to reference Brockmeier SL, Loving CL, Nelson EA, Miller LC, Nicholson TL, Register KB, Grubman MJ, Brough DE, Kehrli Jr ME. The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol. 2012;19:508–14.CrossRefPubMedPubMedCentral Brockmeier SL, Loving CL, Nelson EA, Miller LC, Nicholson TL, Register KB, Grubman MJ, Brough DE, Kehrli Jr ME. The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol. 2012;19:508–14.CrossRefPubMedPubMedCentral
6.
go back to reference Campo MS, Roden RB. Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol. 2010;84:1214–20.CrossRefPubMed Campo MS, Roden RB. Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol. 2010;84:1214–20.CrossRefPubMed
7.
go back to reference Christopher-Hennings J, Nelson EA, Hines RJ, Nelson JK, Swenson SL, Zimmerman JJ, Chase CL, Yaeger MJ, Benfield DA. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest. 1995;7:456–64.CrossRefPubMed Christopher-Hennings J, Nelson EA, Hines RJ, Nelson JK, Swenson SL, Zimmerman JJ, Chase CL, Yaeger MJ, Benfield DA. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest. 1995;7:456–64.CrossRefPubMed
8.
go back to reference Cuartero L, Dee S, Deen J, Ruiz A, Pijoan C. Association between clinical signs and high serum titers of porcine reproductive and respiratory syndrome virus (PRRSV) in nursery pigs under field conditions. J Swine Health Prod. 2002;10:118–21. Cuartero L, Dee S, Deen J, Ruiz A, Pijoan C. Association between clinical signs and high serum titers of porcine reproductive and respiratory syndrome virus (PRRSV) in nursery pigs under field conditions. J Swine Health Prod. 2002;10:118–21.
9.
go back to reference Dubensky Jr TW, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther Adv Vaccines. 2013;1:131–43.CrossRefPubMedPubMedCentral Dubensky Jr TW, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther Adv Vaccines. 2013;1:131–43.CrossRefPubMedPubMedCentral
10.
go back to reference Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu YZ, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic G(2 ′,5 ′) pA(3 ′,5 ′) p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107.CrossRefPubMedPubMedCentral Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu YZ, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic G(2 ′,5 ′) pA(3 ′,5 ′) p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107.CrossRefPubMedPubMedCentral
11.
go back to reference Halbur PG, Miller LD, Paul PS, Meng XJ, Huffman EL, Andrews JJ. Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs. Vet Pathol. 1995;32:200–4.CrossRefPubMed Halbur PG, Miller LD, Paul PS, Meng XJ, Huffman EL, Andrews JJ. Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs. Vet Pathol. 1995;32:200–4.CrossRefPubMed
12.
go back to reference Henderson LM. Overview of marker vaccine and differential diagnostic test technology. Biologicals. 2005;33:203–9.CrossRefPubMed Henderson LM. Overview of marker vaccine and differential diagnostic test technology. Biologicals. 2005;33:203–9.CrossRefPubMed
13.
go back to reference Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, Wang C, Yeske PE, Mowrer CL, Haley CA. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21:72–84. Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, Wang C, Yeske PE, Mowrer CL, Haley CA. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21:72–84.
14.
go back to reference Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4.CrossRefPubMed Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4.CrossRefPubMed
15.
go back to reference Madhun AS, Haaheim LR, Nostbakken JK, Ebensen T, Chichester J, Yusibov V, Guzman CA, Cox RJ. Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine. 2011;29:4973–82.CrossRefPubMed Madhun AS, Haaheim LR, Nostbakken JK, Ebensen T, Chichester J, Yusibov V, Guzman CA, Cox RJ. Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine. 2011;29:4973–82.CrossRefPubMed
16.
go back to reference Margine I, Martinez-Gil L, Chou YY, Krammer F. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PloS one. 2012;7:e51559.CrossRefPubMedPubMedCentral Margine I, Martinez-Gil L, Chou YY, Krammer F. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PloS one. 2012;7:e51559.CrossRefPubMedPubMedCentral
17.
go back to reference Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbiol. 2000;74:309–29.CrossRefPubMed Meng XJ. Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbiol. 2000;74:309–29.CrossRefPubMed
18.
go back to reference Murtaugh MP, Stadejek T, Abrahante JE, Lam TTY, Leung FCC. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res. 2010;154:18–30.CrossRefPubMed Murtaugh MP, Stadejek T, Abrahante JE, Lam TTY, Leung FCC. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res. 2010;154:18–30.CrossRefPubMed
19.
go back to reference Murthy AMV, Ni YY, Meng XJ, Zhang CM. Production and evaluation of virus-like particles displaying immunogenic epitopes of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Int J Mol Sci. 2015;16:8382–96.CrossRefPubMedPubMedCentral Murthy AMV, Ni YY, Meng XJ, Zhang CM. Production and evaluation of virus-like particles displaying immunogenic epitopes of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Int J Mol Sci. 2015;16:8382–96.CrossRefPubMedPubMedCentral
20.
go back to reference Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol. 2013;158:1275–85.CrossRefPubMedPubMedCentral Nam HM, Chae KS, Song YJ, Lee NH, Lee JB, Park SY, Song CS, Seo KH, Kang SM, Kim MC, Choi IS. Immune responses in mice vaccinated with virus-like particles composed of the GP5 and M proteins of porcine reproductive and respiratory syndrome virus. Arch Virol. 2013;158:1275–85.CrossRefPubMedPubMedCentral
21.
go back to reference Pang IK, Pillai PS, Iwasaki A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad Sci U S A. 2013;110:13910–5.CrossRefPubMedPubMedCentral Pang IK, Pillai PS, Iwasaki A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad Sci U S A. 2013;110:13910–5.CrossRefPubMedPubMedCentral
22.
go back to reference Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Live porcine reproductive and respiratory syndrome virus vaccines: current status and future direction. Vaccine. 2015;33:4069–80.CrossRefPubMed Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Live porcine reproductive and respiratory syndrome virus vaccines: current status and future direction. Vaccine. 2015;33:4069–80.CrossRefPubMed
23.
go back to reference Senger T, Schadlich L, Gissmann L, Muller M. Enhanced papillomavirus-like particle production in insect cells. Virology. 2009;388:344–53.CrossRefPubMed Senger T, Schadlich L, Gissmann L, Muller M. Enhanced papillomavirus-like particle production in insect cells. Virology. 2009;388:344–53.CrossRefPubMed
24.
go back to reference Shin J, Torrison J, Choi CS, Gonzalez SM, Crabo BG, Molitor TW. Monitoring of porcine reproductive and respiratory syndrome virus infection in boars. Vet Microbiol. 1997;55:337–46.CrossRefPubMed Shin J, Torrison J, Choi CS, Gonzalez SM, Crabo BG, Molitor TW. Monitoring of porcine reproductive and respiratory syndrome virus infection in boars. Vet Microbiol. 1997;55:337–46.CrossRefPubMed
25.
go back to reference Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.CrossRefPubMed Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.CrossRefPubMed
26.
go back to reference Uribe-Campero L, Monroy-Garcia A, Duran-Meza AL, Villagrana-Escareno MV, Ruiz-Garcia J, Hernandez J, Nunez-Palenius HG, Gomez-Lim MA. Plant-based porcine reproductive and respiratory syndrome virus VLPs induce an immune response in mice. Res Vet Sci. 2015;102:59–66.CrossRefPubMed Uribe-Campero L, Monroy-Garcia A, Duran-Meza AL, Villagrana-Escareno MV, Ruiz-Garcia J, Hernandez J, Nunez-Palenius HG, Gomez-Lim MA. Plant-based porcine reproductive and respiratory syndrome virus VLPs induce an immune response in mice. Res Vet Sci. 2015;102:59–66.CrossRefPubMed
27.
go back to reference Wang W, Chen X, Xue C, Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H, Cao Y. Production and immunogenicity of chimeric virus-like particles containing porcine reproductive and respiratory syndrome virus GP5 protein. Vaccine. 2012;30:7072–7.CrossRefPubMed Wang W, Chen X, Xue C, Du Y, Lv L, Liu Q, Li X, Ma Y, Shen H, Cao Y. Production and immunogenicity of chimeric virus-like particles containing porcine reproductive and respiratory syndrome virus GP5 protein. Vaccine. 2012;30:7072–7.CrossRefPubMed
28.
go back to reference Wang X, Wiley RD, Evans TG, Bowers WJ, Federoff HJ, Dewhurst S. Cellular immune responses to helper-free HSV-1 amplicon particles encoding HIV-1 gp120 are enhanced by DNA priming. Vaccine. 2003;21:2288–97.CrossRefPubMed Wang X, Wiley RD, Evans TG, Bowers WJ, Federoff HJ, Dewhurst S. Cellular immune responses to helper-free HSV-1 amplicon particles encoding HIV-1 gp120 are enhanced by DNA priming. Vaccine. 2003;21:2288–97.CrossRefPubMed
29.
go back to reference Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, Christopher-Hennings J. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol. 2007;152:289–303.CrossRefPubMed Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, Christopher-Hennings J. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Arch Virol. 2007;152:289–303.CrossRefPubMed
30.
go back to reference Wang X, Marthaler D, Rovira A, Rossow S, Murtaugh MP. Emergence of a virulent porcine reproductive and respiratory syndrome virus in vaccinated herds in the United States. Virus Res. 2015;210:34–41.CrossRefPubMed Wang X, Marthaler D, Rovira A, Rossow S, Murtaugh MP. Emergence of a virulent porcine reproductive and respiratory syndrome virus in vaccinated herds in the United States. Virus Res. 2015;210:34–41.CrossRefPubMed
31.
go back to reference Wesley RD, Lager KM, Kehrli Jr ME. Infection with Porcine reproductive and respiratory syndrome virus stimulates an early gamma interferon response in the serum of pigs. Can J Vet Res. 2006;70:176–82.PubMedPubMedCentral Wesley RD, Lager KM, Kehrli Jr ME. Infection with Porcine reproductive and respiratory syndrome virus stimulates an early gamma interferon response in the serum of pigs. Can J Vet Res. 2006;70:176–82.PubMedPubMedCentral
32.
go back to reference Wieringa R, de Vries AAF, van der Meulen J, Godeke GJ, Onderwater JJM, van Tol H, Koerten HK, Mommaas AM, Snijder EJ, Rottier PJM. Structural protein requirements in equine arteritis virus assembly. J Virol. 2004;78:13019–27.CrossRefPubMedPubMedCentral Wieringa R, de Vries AAF, van der Meulen J, Godeke GJ, Onderwater JJM, van Tol H, Koerten HK, Mommaas AM, Snijder EJ, Rottier PJM. Structural protein requirements in equine arteritis virus assembly. J Virol. 2004;78:13019–27.CrossRefPubMedPubMedCentral
33.
go back to reference Zhang H, Guo X, Nelson E, Christopher-Hennings J, Wang X. Porcine reproductive and respiratory syndrome virus activates the transcription of interferon alpha/beta (IFN-alpha/beta) in monocyte-derived dendritic cells (Mo-DC). Vet Microbiol. 2012;159:494–8.CrossRefPubMed Zhang H, Guo X, Nelson E, Christopher-Hennings J, Wang X. Porcine reproductive and respiratory syndrome virus activates the transcription of interferon alpha/beta (IFN-alpha/beta) in monocyte-derived dendritic cells (Mo-DC). Vet Microbiol. 2012;159:494–8.CrossRefPubMed
Metadata
Title
Intranasal immunization of pigs with porcine reproductive and respiratory syndrome virus-like particles plus 2′, 3′-cGAMP VacciGrade™ adjuvant exacerbates viremia after virus challenge
Authors
Alexandria Van Noort
April Nelsen
Angela E. Pillatzki
Diego G. Diel
Feng Li
Eric Nelson
Xiuqing Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0746-0

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue