Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Study of SV40 large T antigen nucleotide specificity for DNA unwinding

Authors: Damian Wang, Ana Lucia Álvarez-Cabrera, Xiaojiang S. Chen

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Simian Virus 40 (SV40) Large Tumor Antigen (LT) is an essential enzyme that plays a vital role in viral DNA replication in mammalian cells. As a replicative helicase and initiator, LT assembles as a double-hexamer at the SV40 origin to initiate genomic replication. In this process, LT converts the chemical energy from ATP binding and hydrolysis into the mechanical work required for unwinding replication forks. It has been demonstrated that even though LT primarily utilizes ATP to unwind DNA, other NTPs can also support low DNA helicase activity. Despite previous studies on specific LT residues involved in ATP hydrolysis, no systematic study has been done to elucidate the residues participating in the selective usage of different nucleotides by LT. In this study, we performed a systematic mutational analysis around the nucleotide pocket and identified residues regulating the specificity for ATP, TTP and UTP in LT DNA unwinding.

Methods

We performed site-directed mutagenesis to generate 16 LT nucleotide pocket mutants and characterized each mutant’s ability to unwind double-stranded DNA, oligomerize, and bind different nucleotides using helicase assays, size-exclusion chromatography, and isothermal titration calorimetry, respectively.

Results

We identified four residues in the nucleotide pocket of LT, cS430, tK419, cW393 and cL557 that selectively displayed more profound impact on using certain nucleotides for LT DNA helicase activity.

Conclusion

Little is known regarding the mechanisms of nucleotide specificity in SV40 LT DNA unwinding despite the abundance of information available for understanding LT nucleotide hydrolysis. The systematic residue analysis performed in this report provides significant insight into the selective usage of different nucleotides in LT helicase activity, increasing our understanding of how LT may structurally prefer different energy sources for its various targeted cellular activities.
Literature
1.
go back to reference Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.CrossRefPubMed Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.CrossRefPubMed
2.
go back to reference Fanning E, Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem. 1992;61:55–85.CrossRefPubMed Fanning E, Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem. 1992;61:55–85.CrossRefPubMed
3.
go back to reference Ahuja D, Saenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 2005;24:7729–45.CrossRefPubMed Ahuja D, Saenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 2005;24:7729–45.CrossRefPubMed
4.
go back to reference Sullivan CS, Pipas JM. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev. 2002;66:179–202.CrossRefPubMedPubMedCentral Sullivan CS, Pipas JM. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev. 2002;66:179–202.CrossRefPubMedPubMedCentral
5.
go back to reference Cheng J, Decaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol. 2009;19:218–28.CrossRefPubMedPubMedCentral Cheng J, Decaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol. 2009;19:218–28.CrossRefPubMedPubMedCentral
6.
go back to reference Simmons DT. SV40 large T antigen functions in DNA replication and transformation. Adv Virus Res. 2000;55:75–134.CrossRefPubMed Simmons DT. SV40 large T antigen functions in DNA replication and transformation. Adv Virus Res. 2000;55:75–134.CrossRefPubMed
8.
go back to reference Borowiec JA, Dean FB, Bullock PA, Hurwitz J. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell. 1990;60:181–4.CrossRefPubMed Borowiec JA, Dean FB, Bullock PA, Hurwitz J. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell. 1990;60:181–4.CrossRefPubMed
11.
go back to reference Scheffner M, Knippers R, Stahl H. RNA unwinding activity of SV40 large T antigen. Cell. 1989;57:955–63.CrossRefPubMed Scheffner M, Knippers R, Stahl H. RNA unwinding activity of SV40 large T antigen. Cell. 1989;57:955–63.CrossRefPubMed
12.
go back to reference Bullock PA. The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol. 1997;32:503–68.CrossRefPubMed Bullock PA. The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol. 1997;32:503–68.CrossRefPubMed
13.
go back to reference Wun-Kim K, Simmons DT. Mapping of helicase and helicase substrate-binding domains on simian virus 40 large T antigen. J Virol. 1990;64:2014–20.PubMedPubMedCentral Wun-Kim K, Simmons DT. Mapping of helicase and helicase substrate-binding domains on simian virus 40 large T antigen. J Virol. 1990;64:2014–20.PubMedPubMedCentral
14.
go back to reference Gai D, Li D, Finkielstein CV, Ott RD, Taneja P, Fanning E, et al. Insights into the oligomeric states, conformational changes, and helicase activities of SV40 large tumor antigen. J Biol Chem. 2004;279:38952–9.CrossRefPubMed Gai D, Li D, Finkielstein CV, Ott RD, Taneja P, Fanning E, et al. Insights into the oligomeric states, conformational changes, and helicase activities of SV40 large tumor antigen. J Biol Chem. 2004;279:38952–9.CrossRefPubMed
15.
go back to reference Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell. 2004;119:47–60.CrossRefPubMed Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell. 2004;119:47–60.CrossRefPubMed
16.
go back to reference Arthur AK, Hoss A, Fanning E. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids. J Virol. 1988;62:1999–2006.PubMedPubMedCentral Arthur AK, Hoss A, Fanning E. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids. J Virol. 1988;62:1999–2006.PubMedPubMedCentral
17.
go back to reference Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, Decaprio JA, et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature. 2003;423:512–8.CrossRefPubMed Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, Decaprio JA, et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature. 2003;423:512–8.CrossRefPubMed
18.
go back to reference Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 1993;21:2541–7.CrossRefPubMedPubMedCentral Koonin EV. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 1993;21:2541–7.CrossRefPubMedPubMedCentral
19.
go back to reference Tjian R, Robbins A. Enzymatic activities associated with a purified simian virus 40 T antigen-related protein. Proc Natl Acad Sci U S A. 1979;76:610–4.CrossRefPubMedPubMedCentral Tjian R, Robbins A. Enzymatic activities associated with a purified simian virus 40 T antigen-related protein. Proc Natl Acad Sci U S A. 1979;76:610–4.CrossRefPubMedPubMedCentral
20.
go back to reference Fanning E. Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol. 1992;66:1289–93.PubMedPubMedCentral Fanning E. Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol. 1992;66:1289–93.PubMedPubMedCentral
21.
go back to reference Dean FB, Bullock P, Murakami Y, Wobbe CR, Weissbach L, Hurwitz J. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci U S A. 1987;84:16–20.CrossRefPubMedPubMedCentral Dean FB, Bullock P, Murakami Y, Wobbe CR, Weissbach L, Hurwitz J. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci U S A. 1987;84:16–20.CrossRefPubMedPubMedCentral
22.
go back to reference Mastrangelo IA, Hough PV, Wall JS, Dodson M, Dean FB, Hurwitz J. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature. 1989;338:658–62.CrossRefPubMed Mastrangelo IA, Hough PV, Wall JS, Dodson M, Dean FB, Hurwitz J. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature. 1989;338:658–62.CrossRefPubMed
23.
go back to reference Greenleaf WB, Shen J, Gai D, Chen XS. Systematic study of the functions for the residues around the nucleotide pocket in simian virus 40 AAA+ hexameric helicase. J Virol. 2008;82:6017–23.CrossRefPubMedPubMedCentral Greenleaf WB, Shen J, Gai D, Chen XS. Systematic study of the functions for the residues around the nucleotide pocket in simian virus 40 AAA+ hexameric helicase. J Virol. 2008;82:6017–23.CrossRefPubMedPubMedCentral
24.
go back to reference Wiekowski M, Schwarz MW, Stahl H. Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements. J Biol Chem. 1988;263:436–42.PubMed Wiekowski M, Schwarz MW, Stahl H. Simian virus 40 large T antigen DNA helicase. Characterization of the ATPase-dependent DNA unwinding activity and its substrate requirements. J Biol Chem. 1988;263:436–42.PubMed
25.
go back to reference Lorimer HE, Wang EH, Prives C. The DNA-binding properties of polyomavirus large T antigen are altered by ATP and other nucleotides. J Virol. 1991;65:687–99.PubMedPubMedCentral Lorimer HE, Wang EH, Prives C. The DNA-binding properties of polyomavirus large T antigen are altered by ATP and other nucleotides. J Virol. 1991;65:687–99.PubMedPubMedCentral
26.
go back to reference Shen J, Gai D, Patrick A, Greenleaf WB, Chen XS. The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci U S A. 2005;102:11248–53.CrossRefPubMedPubMedCentral Shen J, Gai D, Patrick A, Greenleaf WB, Chen XS. The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci U S A. 2005;102:11248–53.CrossRefPubMedPubMedCentral
27.
go back to reference Yu XJ, Greenleaf WB, Shi YS, Chen XS. Mechanism of subunit coordination of an AAA+ hexameric molecular nanomachine. Nanomedicine. 2015;11:531–41.CrossRefPubMed Yu XJ, Greenleaf WB, Shi YS, Chen XS. Mechanism of subunit coordination of an AAA+ hexameric molecular nanomachine. Nanomedicine. 2015;11:531–41.CrossRefPubMed
28.
go back to reference Satapathy AK, Crampton DJ, Beauchamp BB, Richardson CC. Promiscuous usage of nucleotides by the DNA helicase of bacteriophage T7: determinants of nucleotide specificity. J Biol Chem. 2009;284:14286–95.CrossRefPubMedPubMedCentral Satapathy AK, Crampton DJ, Beauchamp BB, Richardson CC. Promiscuous usage of nucleotides by the DNA helicase of bacteriophage T7: determinants of nucleotide specificity. J Biol Chem. 2009;284:14286–95.CrossRefPubMedPubMedCentral
29.
go back to reference Goetz GS, Dean FB, Hurwitz J, Matson SW. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J Biol Chem. 1988;263:383–92.PubMed Goetz GS, Dean FB, Hurwitz J, Matson SW. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J Biol Chem. 1988;263:383–92.PubMed
31.
go back to reference Huang SG, Weisshart K, Fanning E. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. Biochemistry. 1998;37:15336–44.CrossRefPubMed Huang SG, Weisshart K, Fanning E. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. Biochemistry. 1998;37:15336–44.CrossRefPubMed
32.
go back to reference Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science. 2007;318:459–63.CrossRefPubMed Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science. 2007;318:459–63.CrossRefPubMed
33.
go back to reference Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature. 2006;442:270–5.CrossRefPubMed Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature. 2006;442:270–5.CrossRefPubMed
34.
go back to reference Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell. 1999;99:167–77.CrossRefPubMed Sawaya MR, Guo S, Tabor S, Richardson CC, Ellenberger T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell. 1999;99:167–77.CrossRefPubMed
35.
go back to reference Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, et al. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A. 2008;105:20191–6.CrossRefPubMedPubMedCentral Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, et al. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A. 2008;105:20191–6.CrossRefPubMedPubMedCentral
36.
go back to reference Putnam CD, Clancy SB, Tsuruta H, Gonzalez S, Wetmur JG, Tainer JA. Structure and mechanism of the RuvB Holliday junction branch migration motor. J Mol Biol. 2001;311:297–310.CrossRefPubMed Putnam CD, Clancy SB, Tsuruta H, Gonzalez S, Wetmur JG, Tainer JA. Structure and mechanism of the RuvB Holliday junction branch migration motor. J Mol Biol. 2001;311:297–310.CrossRefPubMed
37.
go back to reference Bujalowski W, Klonowska MM, Jezewska MJ. Oligomeric structure of Escherichia coli primary replicative helicase DnaB protein. J Biol Chem. 1994;269:31350–8.PubMed Bujalowski W, Klonowska MM, Jezewska MJ. Oligomeric structure of Escherichia coli primary replicative helicase DnaB protein. J Biol Chem. 1994;269:31350–8.PubMed
38.
go back to reference Picha KM, Patel SS. Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding. J Biol Chem. 1998;273:27315–9.CrossRefPubMed Picha KM, Patel SS. Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding. J Biol Chem. 1998;273:27315–9.CrossRefPubMed
Metadata
Title
Study of SV40 large T antigen nucleotide specificity for DNA unwinding
Authors
Damian Wang
Ana Lucia Álvarez-Cabrera
Xiaojiang S. Chen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0733-5

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue