Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Short report

Identification of Two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016

Authors: Jipseol Jeong, Chanjin Woo, Hon S. Ip, Injung An, Youngsik Kim, Kwanghee Lee, Seong-Deok Jo, Kidong Son, Saemi Lee, Jae-Ku Oem, Seung-Jun Wang, Yongkwan Kim, Jeonghwa Shin, Jonathan Sleeman, Weonhwa Jheong

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

On November 20, 2016 two novel strains of H5N6 highly pathogenic avian influenza virus (HPAIVs) were isolated from three whooper swans (Cygnus cygnus) at Gangjin Bay in South Jeolla province, South Korea. Identification of HPAIVs in wild birds is significant as there is a potential risk of transmission of these viruses to poultry and humans.

Results

Phylogenetic analysis revealed that Gangjin H5N6 viruses classified into Asian H5 clade 2.3.4.4 lineage and were distinguishable from H5N8 and H5N1 HPAIVs previously isolated in Korea. With the exception of the polymerase acidic (PA) gene, the viruses were most closely related to A/duck/Guangdong/01.01SZSGXJK005-Y/2016 (H5N6) (98.90 ~ 99.74%). The PA genes of the two novel Gangjin H5N6 viruses were most closely related to AIV isolates previously characterized from Korea, A/hooded crane/Korea/1176/2016 (H1N1) (99.16%) and A/environment/Korea/W133/2006 (H7N7) (98.65%). The lack of more recent viruses to A/environment/Korea/W133/2006 (H7N7) indicates the need for analysis of recent wild bird AIVs isolated in Korea because they might provide further clues as to the origin of these novel reassortant H5N6 viruses.

Conclusions

Although research on the origins and epidemiology of these infections is ongoing, the most likely route of infection for the whooper swans was through direct or indirect contact with reassortant viruses shed by migratory wild birds in Korea. As H5N6 HPAIVs can potentially be transmitted to poultry and humans, continuous monitoring of AIVs among wild birds will help to mitigate this risk.
Literature
1.
go back to reference Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56(1):152–79.PubMedPubMedCentral Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56(1):152–79.PubMedPubMedCentral
2.
go back to reference Chen H, Smith GJ, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JS, Guan Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature. 2005;436(7048):191–2.CrossRefPubMed Chen H, Smith GJ, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JS, Guan Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature. 2005;436(7048):191–2.CrossRefPubMed
3.
go back to reference Jeong J, Kang HM, Lee EK, Song BM, Kwon YK, Kim HR, Choi KS, Kim JY, Lee HJ, Moon OK, Jeong W, Choi J, Baek JH, Joo YS, Park YH, Lee HS, Lee YJ. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol. 2014;173(3–4):249–57.CrossRefPubMed Jeong J, Kang HM, Lee EK, Song BM, Kwon YK, Kim HR, Choi KS, Kim JY, Lee HJ, Moon OK, Jeong W, Choi J, Baek JH, Joo YS, Park YH, Lee HS, Lee YJ. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol. 2014;173(3–4):249–57.CrossRefPubMed
6.
go back to reference Fereidouni SR, Starick E, Grund C, Globig A, Mettenleiter TC, Beer M, Harder T. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Vet Microbiol. 2009;135(3–4):253–60.CrossRefPubMed Fereidouni SR, Starick E, Grund C, Globig A, Mettenleiter TC, Beer M, Harder T. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Vet Microbiol. 2009;135(3–4):253–60.CrossRefPubMed
7.
go back to reference Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146(12):2275–89.CrossRefPubMed Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146(12):2275–89.CrossRefPubMed
8.
go back to reference Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312(5772):404–10.CrossRefPubMed Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science. 2006;312(5772):404–10.CrossRefPubMed
9.
go back to reference Orozovic G, Orozovic K, Lennerstrand J, Olsen B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS One. 2011;6(1):e16028.CrossRefPubMedPubMedCentral Orozovic G, Orozovic K, Lennerstrand J, Olsen B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS One. 2011;6(1):e16028.CrossRefPubMedPubMedCentral
10.
go back to reference Claes F, Morzaria SP, Donis RO. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained. Curr Opin Virol. 2016;16:158–63.CrossRefPubMed Claes F, Morzaria SP, Donis RO. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained. Curr Opin Virol. 2016;16:158–63.CrossRefPubMed
11.
go back to reference Bi Y, Liu H, Xiong C, Di L, Shi W, Li M, Liu S, Chen J, Chen G, Li Y, Yang G, Lei Y, Xiong Y, Lei F, Wang H, Chen Q, Chen J, Gao GF. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep. 2016;6:29888.CrossRefPubMedPubMedCentral Bi Y, Liu H, Xiong C, Di L, Shi W, Li M, Liu S, Chen J, Chen G, Li Y, Yang G, Lei Y, Xiong Y, Lei F, Wang H, Chen Q, Chen J, Gao GF. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep. 2016;6:29888.CrossRefPubMedPubMedCentral
12.
go back to reference Newman SH, Iverson SA, Takekawa JY, Gilbert M, Prosser DJ, Batbayar N, Natsagdorj T, Douglas DC. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia. PLoS One. 2009;4(5):e5729.CrossRefPubMedPubMedCentral Newman SH, Iverson SA, Takekawa JY, Gilbert M, Prosser DJ, Batbayar N, Natsagdorj T, Douglas DC. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia. PLoS One. 2009;4(5):e5729.CrossRefPubMedPubMedCentral
13.
go back to reference Brown JD, Stallknecht DE, Swayne DE. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg Infect Dis. 2008;14(1):136–42.CrossRefPubMedPubMedCentral Brown JD, Stallknecht DE, Swayne DE. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg Infect Dis. 2008;14(1):136–42.CrossRefPubMedPubMedCentral
Metadata
Title
Identification of Two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016
Authors
Jipseol Jeong
Chanjin Woo
Hon S. Ip
Injung An
Youngsik Kim
Kwanghee Lee
Seong-Deok Jo
Kidong Son
Saemi Lee
Jae-Ku Oem
Seung-Jun Wang
Yongkwan Kim
Jeonghwa Shin
Jonathan Sleeman
Weonhwa Jheong
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0731-7

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue