Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene

Authors: Yunfang Su, Yunchao Liu, Yumei Chen, Baolei Zhao, Pengchao Ji, Guangxu Xing, Dawei Jiang, Chang Liu, Yapeng Song, Guoqiang Wang, Dongliang Li, Ruiguang Deng, Gaiping Zhang

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1–789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed.

Methods

PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software.

Results

The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13–019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains.

Conclusions

These findings illustrated the existence of genetic diversity among geographically distinct PEDV strains, and our study has provided an impetus to conduct further research on the PEDV receptor binding protein and on the new and efficacious vaccines design.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58:243–7.CrossRefPubMed Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58:243–7.CrossRefPubMed
2.
go back to reference Takahashi K, Okada K, Ohshima K. An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. J Vet Sci. 1983;45:829–32. Takahashi K, Okada K, Ohshima K. An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. J Vet Sci. 1983;45:829–32.
3.
go back to reference Puranaveja S, Poolperm P, Lertwatcharasarakul P, Kesdaengsakonwut S, Boonsoongnern A, Urairong K, et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg Infect Dis. 2009;15:1112–5.CrossRefPubMedPubMedCentral Puranaveja S, Poolperm P, Lertwatcharasarakul P, Kesdaengsakonwut S, Boonsoongnern A, Urairong K, et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg Infect Dis. 2009;15:1112–5.CrossRefPubMedPubMedCentral
4.
go back to reference Martelli P, Lavazza A, Nigrelli AD, Merialdi G, Alborali LG. Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy. Vet Rec. 2008;162:307–10.CrossRefPubMed Martelli P, Lavazza A, Nigrelli AD, Merialdi G, Alborali LG. Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy. Vet Rec. 2008;162:307–10.CrossRefPubMed
5.
go back to reference Cima G. Viral disease affects U.S. pigs: porcine epidemic diarrhea found in at least 11 states. J Am Vet Med Assoc. 2013;243:30–1.PubMed Cima G. Viral disease affects U.S. pigs: porcine epidemic diarrhea found in at least 11 states. J Am Vet Med Assoc. 2013;243:30–1.PubMed
6.
go back to reference Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis. 2012;18:161–3.CrossRefPubMedPubMedCentral Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis. 2012;18:161–3.CrossRefPubMedPubMedCentral
7.
go back to reference Bridgen A, Kocherhans R, Tobler K, Carvajal A, Ackermann M. Further analysis of the genome of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1998;440:781–6.CrossRefPubMed Bridgen A, Kocherhans R, Tobler K, Carvajal A, Ackermann M. Further analysis of the genome of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1998;440:781–6.CrossRefPubMed
8.
go back to reference Kocherhans R, Bridgen A, Ackermann M, Tobler K. Completion of the Porcine Epidemic Diarrhoea Coronavirus (PEDV) genome sequence. Virus Genes. 2001;23:137–44.CrossRefPubMed Kocherhans R, Bridgen A, Ackermann M, Tobler K. Completion of the Porcine Epidemic Diarrhoea Coronavirus (PEDV) genome sequence. Virus Genes. 2001;23:137–44.CrossRefPubMed
9.
go back to reference Duarte M, Tobler K, Bridgen A, Rasschaert D, Ackermann M, Laude H. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology. 1994;198:466–76.CrossRefPubMed Duarte M, Tobler K, Bridgen A, Rasschaert D, Ackermann M, Laude H. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology. 1994;198:466–76.CrossRefPubMed
10.
go back to reference Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol. 1998;72:8636–43.PubMedPubMedCentral Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol. 1998;72:8636–43.PubMedPubMedCentral
11.
go back to reference Curtis KM, Yount B, Baric RS. Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol. 2002;76:1422–34.CrossRefPubMedPubMedCentral Curtis KM, Yount B, Baric RS. Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol. 2002;76:1422–34.CrossRefPubMedPubMedCentral
12.
go back to reference Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30.PubMed Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30.PubMed
13.
go back to reference Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett. 2012;586:384–91.CrossRefPubMed Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett. 2012;586:384–91.CrossRefPubMed
14.
go back to reference Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol. 2015;89:1954–64.CrossRefPubMed Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol. 2015;89:1954–64.CrossRefPubMed
15.
go back to reference Deng F, Ye G, Liu Q, Navid MT, Zhong X, Li Y, et al. Identification and comparison of receptor binding haracteristics of the spike protein of two porcine pidemic diarrheavirus strains. Viruses. 2016; doi: 10.3390/v8030055. Deng F, Ye G, Liu Q, Navid MT, Zhong X, Li Y, et al. Identification and comparison of receptor binding haracteristics of the spike protein of two porcine pidemic diarrheavirus strains. Viruses. 2016; doi: 10.3390/v8030055.
16.
go back to reference Chen J, Liu X, Shi D, Shi H, Zhang X, Li C, et al. Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses. 2013;5:2601–13.CrossRefPubMedPubMedCentral Chen J, Liu X, Shi D, Shi H, Zhang X, Li C, et al. Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses. 2013;5:2601–13.CrossRefPubMedPubMedCentral
17.
go back to reference Suzuki T, Murakami S, Takahashi O, Kodera A, Masuda T, Itoh S, et al. Molecular characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. Infect Genet Evol. 2015;36:363–8.CrossRefPubMed Suzuki T, Murakami S, Takahashi O, Kodera A, Masuda T, Itoh S, et al. Molecular characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. Infect Genet Evol. 2015;36:363–8.CrossRefPubMed
18.
go back to reference Chang SH, Bae JL, Kang TJ, Kim J, Chung GH, Lim CW, et al. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells. 2002;14:295–9.PubMed Chang SH, Bae JL, Kang TJ, Kim J, Chung GH, Lim CW, et al. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells. 2002;14:295–9.PubMed
19.
go back to reference Sun D, Feng L, Shi H, Chen J, Cui X, Chen H, et al. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol. 2008;131:73–81.CrossRefPubMed Sun D, Feng L, Shi H, Chen J, Cui X, Chen H, et al. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol. 2008;131:73–81.CrossRefPubMed
20.
go back to reference Li R, Qiao S, Yang Y, Su Y, Zhao P, Zhou E, et al. Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes. Arch Virol. 2013;159:1057–65.CrossRefPubMed Li R, Qiao S, Yang Y, Su Y, Zhao P, Zhou E, et al. Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes. Arch Virol. 2013;159:1057–65.CrossRefPubMed
21.
go back to reference Song D, Huang D, Peng Q, Huang T, Chen Y, Zhang T, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PLoS One. 2015;10:e0120310.CrossRefPubMedPubMedCentral Song D, Huang D, Peng Q, Huang T, Chen Y, Zhang T, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PLoS One. 2015;10:e0120310.CrossRefPubMedPubMedCentral
22.
go back to reference Wang X, Chen J, Shi D, Shi H, Zhang X, Yuan J, et al. Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2. Arch Virol. 2016;161:537–47.CrossRefPubMed Wang X, Chen J, Shi D, Shi H, Zhang X, Yuan J, et al. Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2. Arch Virol. 2016;161:537–47.CrossRefPubMed
23.
go back to reference Park SJ, Song DS, Ha GW, Park BK. Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13. Virus Genes. 2007;35:55–64.CrossRefPubMed Park SJ, Song DS, Ha GW, Park BK. Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13. Virus Genes. 2007;35:55–64.CrossRefPubMed
24.
go back to reference Park SJ, Moon HJ, Luo Y, Kim HK, Kim EM, Yang JS, et al. Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes. 2008;36:95–104.CrossRefPubMed Park SJ, Moon HJ, Luo Y, Kim HK, Kim EM, Yang JS, et al. Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses. Virus Genes. 2008;36:95–104.CrossRefPubMed
25.
go back to reference Temeeyasen G, Srijangwad A, Tripipat T, Tipsombatboon P, Piriyapongsa J, Phoolcharoen W, et al. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand. Infect Genet Evol. 2014;21:205–13.CrossRefPubMed Temeeyasen G, Srijangwad A, Tripipat T, Tipsombatboon P, Piriyapongsa J, Phoolcharoen W, et al. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand. Infect Genet Evol. 2014;21:205–13.CrossRefPubMed
26.
go back to reference Huang YW, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio. 2013;4:e00737–13.CrossRefPubMedPubMedCentral Huang YW, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio. 2013;4:e00737–13.CrossRefPubMedPubMedCentral
28.
go back to reference Kim SY, Song DS, Park BK. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J Vet Diagn Invest. 2001;13:516–20.CrossRefPubMed Kim SY, Song DS, Park BK. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J Vet Diagn Invest. 2001;13:516–20.CrossRefPubMed
29.
go back to reference Jung K, Chae C. Effect of temperature on the detection of porcine epidemic diarrhea virus and transmissible gastroenteritis virus in fecal samples by reverse transcription-polymerase chain reaction. J Vet Diagn Invest. 2004;16:237–9.CrossRefPubMed Jung K, Chae C. Effect of temperature on the detection of porcine epidemic diarrhea virus and transmissible gastroenteritis virus in fecal samples by reverse transcription-polymerase chain reaction. J Vet Diagn Invest. 2004;16:237–9.CrossRefPubMed
30.
go back to reference Song DS, Kang BK, Oh JS, Ha GW, Yang JS, Moon HJ, et al. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J Vet Diagn Invest. 2006;18:278–81.CrossRefPubMed Song DS, Kang BK, Oh JS, Ha GW, Yang JS, Moon HJ, et al. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J Vet Diagn Invest. 2006;18:278–81.CrossRefPubMed
31.
go back to reference Song DS, Yang JS, Oh JS, Han JH, Park BK. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF3. Vaccine. 2003;21:1833–42.CrossRefPubMed Song DS, Yang JS, Oh JS, Han JH, Park BK. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF3. Vaccine. 2003;21:1833–42.CrossRefPubMed
32.
go back to reference Oh J, Lee KW, Choi HW, Lee C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol. 2014;159:2977–87. Oh J, Lee KW, Choi HW, Lee C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol. 2014;159:2977–87.
33.
go back to reference Oka T, Saif LJ, Marthaler D, Esseili MA, Meulia T, Lin CM, et al. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Vet Microbiol. 2014;173:258–69.CrossRefPubMed Oka T, Saif LJ, Marthaler D, Esseili MA, Meulia T, Lin CM, et al. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Vet Microbiol. 2014;173:258–69.CrossRefPubMed
34.
go back to reference Wang XM, Niu BB, Yan H, Gao DS, Yang X, Chen L, et al. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Arch Virol. 2013;158:2487–94. Wang XM, Niu BB, Yan H, Gao DS, Yang X, Chen L, et al. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Arch Virol. 2013;158:2487–94.
35.
go back to reference Chen X, Yang J, Yu F, Ge J, Lin T, Song T. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) samples from field cases in Fujian, China. Virus Genes. 2012;45:499–507.CrossRefPubMed Chen X, Yang J, Yu F, Ge J, Lin T, Song T. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) samples from field cases in Fujian, China. Virus Genes. 2012;45:499–507.CrossRefPubMed
36.
go back to reference Tian Y, Yu Z, Cheng K, Liu Y, Huang J, Xin Y, et al. Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012. Viruses. 2013;5:1991–2004.CrossRefPubMedPubMedCentral Tian Y, Yu Z, Cheng K, Liu Y, Huang J, Xin Y, et al. Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012. Viruses. 2013;5:1991–2004.CrossRefPubMedPubMedCentral
37.
go back to reference Li ZL, Zhu L, Ma JY, Zhou QF, Song YH, Sun BL, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China. Virus Genes. 2012;45:181–5.CrossRefPubMed Li ZL, Zhu L, Ma JY, Zhou QF, Song YH, Sun BL, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China. Virus Genes. 2012;45:181–5.CrossRefPubMed
38.
go back to reference Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol. 2015;89:6121–5.CrossRefPubMedPubMedCentral Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol. 2015;89:6121–5.CrossRefPubMedPubMedCentral
39.
go back to reference Deng F, Ye G, Liu Q, Navid MT, Zhong X, Li Y, Wan C, Xiao S, He Q, Fu ZF, Peng G. Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains. Viruses. 2016;8:55. doi:10.3390/v8030055.CrossRefPubMedPubMedCentral Deng F, Ye G, Liu Q, Navid MT, Zhong X, Li Y, Wan C, Xiao S, He Q, Fu ZF, Peng G. Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains. Viruses. 2016;8:55. doi:10.​3390/​v8030055.CrossRefPubMedPubMedCentral
40.
go back to reference Chen X, Zeng L, Yang J, Yu F, Ge J, Guo Q, et al. Sequence heterogeneity of the ORF3 gene of porcine epidemic diarrhea viruses field samples in Fujian, China, 2010–2012. Viruses. 2013;5:2375–83.CrossRefPubMedPubMedCentral Chen X, Zeng L, Yang J, Yu F, Ge J, Guo Q, et al. Sequence heterogeneity of the ORF3 gene of porcine epidemic diarrhea viruses field samples in Fujian, China, 2010–2012. Viruses. 2013;5:2375–83.CrossRefPubMedPubMedCentral
Metadata
Title
Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene
Authors
Yunfang Su
Yunchao Liu
Yumei Chen
Baolei Zhao
Pengchao Ji
Guangxu Xing
Dawei Jiang
Chang Liu
Yapeng Song
Guoqiang Wang
Dongliang Li
Ruiguang Deng
Gaiping Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0646-8

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue