Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Asna1/TRC40 that mediates membrane insertion of tail-anchored proteins is required for efficient release of Herpes simplex virus 1 virions

Authors: Melanie Ott, Débora Marques, Christina Funk, Susanne M. Bailer

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Herpes simplex virus type 1 (HSV1), a member of the alphaherpesvirinae, can cause recurrent facial lesions and encephalitis. Two membrane envelopment processes, one at the inner nuclear membrane and a second at cytoplasmic membranes are crucial for a productive viral infection. Depending on the subfamily, herpesviruses encode more than 11 different transmembrane proteins including members of the tail-anchored protein family. HSV1 encodes three tail-anchored proteins pUL34, pUL56 and pUS9 characterized by a single hydrophobic region positioned at their C-terminal end that needs to be released from the ribosome prior to posttranslational membrane insertion. Asna1/TRC40 is an ATPase that targets tail-anchored proteins to the endoplasmic reticulum in a receptor-dependent manner. Cell biological data point to a critical and general role of Asna1/TRC40 in tail-anchored protein biogenesis. With this study, we aimed to determine the importance of the tail-anchored insertion machinery for HSV1 infection.

Methods

To determine protein-protein interactions, the yeast-two hybrid system was applied. Asna1/TRC40 was depleted using RNA interference. Transient transfection and virus infection experiments followed by indirect immunofluorescence analysis were applied to analyse the localization of viral proteins as well as the impact of Asna1/TRC40 depletion on virus infection.

Results

All HSV1 tail-anchored proteins specifically bound to Asna1/TRC40 but independently localized to their target membranes. While non-essential for cell viability, Asna1/TRC40 is required for efficient HSV1 replication. We show that early events of the replication cycle like virion entry and overall viral gene expression were unaffected by depletion of Asna1/TRC40. Furthermore, equal amounts of infectious virions were formed and remained cell-associated. This indicated that both nuclear egress of capsids that requires the essential tail-anchored protein pUL34, and secondary envelopment to form infectious virions were successfully completed. Despite large part of the virus life cycle proceeding normally, viral propagation was more than 10 fold reduced. We show that depletion of Asna1/TRC40 specifically affected a step late in infection during release of infectious virions to the extracellular milieu.

Conclusions

Asna1/TRC40 is required at a late step of herpesviral infection for efficient release of mature virions to the extracellular milieu. This study reveals novel tools to decipher exocytosis of newly formed virions as well as hitherto unknown cellular targets for antiviral therapy.
Literature
1.
go back to reference Johnson DC, Baines JD. Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol. 2011;9:382–94.CrossRefPubMed Johnson DC, Baines JD. Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol. 2011;9:382–94.CrossRefPubMed
2.
go back to reference Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res. 2009;143:222–34.CrossRefPubMed Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res. 2009;143:222–34.CrossRefPubMed
3.
go back to reference Stefanovic S, Hegde RS. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell. 2007;128:1147–59.CrossRefPubMed Stefanovic S, Hegde RS. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell. 2007;128:1147–59.CrossRefPubMed
4.
go back to reference Rabu C, Wipf P, Brodsky JL, High S. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J Biol Chem. 2008;283:27504–13.CrossRefPubMedPubMedCentral Rabu C, Wipf P, Brodsky JL, High S. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J Biol Chem. 2008;283:27504–13.CrossRefPubMedPubMedCentral
5.
go back to reference Johnson N, Powis K, High S. Post-translational translocation into the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833:2403–9. Johnson N, Powis K, High S. Post-translational translocation into the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833:2403–9.
6.
go back to reference Vilardi F, Lorenz H, Dobberstein B. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J Cell Sci. 2011;124:1301–7.CrossRefPubMedPubMedCentral Vilardi F, Lorenz H, Dobberstein B. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J Cell Sci. 2011;124:1301–7.CrossRefPubMedPubMedCentral
7.
go back to reference Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, et al. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain. PLoS Pathog. 2015;11:e1004957.CrossRefPubMedPubMedCentral Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, et al. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain. PLoS Pathog. 2015;11:e1004957.CrossRefPubMedPubMedCentral
8.
go back to reference Bjerke SL, Cowan JM, Kerr JK, Reynolds AE, Baines JD, Roller RJ. Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol. 2003;77:7601–10.CrossRefPubMedPubMedCentral Bjerke SL, Cowan JM, Kerr JK, Reynolds AE, Baines JD, Roller RJ. Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol. 2003;77:7601–10.CrossRefPubMedPubMedCentral
9.
go back to reference Ott M, Tascher G, Hassdenteufel S, Zimmermann R, Haas J, Bailer SM. Functional characterization of the essential tail anchor of the herpes simplex virus type 1 nuclear egress protein pUL34. J Gen Virol. 2011;92:2734–45.CrossRefPubMed Ott M, Tascher G, Hassdenteufel S, Zimmermann R, Haas J, Bailer SM. Functional characterization of the essential tail anchor of the herpes simplex virus type 1 nuclear egress protein pUL34. J Gen Virol. 2011;92:2734–45.CrossRefPubMed
10.
go back to reference Mettenleiter TC, Muller F, Granzow H, Klupp BG. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol. 2013;15:170–8.CrossRefPubMed Mettenleiter TC, Muller F, Granzow H, Klupp BG. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol. 2013;15:170–8.CrossRefPubMed
11.
go back to reference Ushijima Y, Luo C, Kamakura M, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Virol J. 2010;7:179.CrossRefPubMedPubMedCentral Ushijima Y, Luo C, Kamakura M, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Virol J. 2010;7:179.CrossRefPubMedPubMedCentral
12.
go back to reference Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, et al. The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons. J Virol. 2016;90:2102–11.CrossRefPubMedCentral Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, et al. The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons. J Virol. 2016;90:2102–11.CrossRefPubMedCentral
14.
go back to reference Striebinger H, Zhang J, Ott M, Funk C, Radtke K, et al. Subcellular trafficking and functional importance of herpes simplex virus type 1 glycoprotein M domains. J Gen Virol. 2015;96:3313–25.CrossRefPubMed Striebinger H, Zhang J, Ott M, Funk C, Radtke K, et al. Subcellular trafficking and functional importance of herpes simplex virus type 1 glycoprotein M domains. J Gen Virol. 2015;96:3313–25.CrossRefPubMed
15.
go back to reference Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral
16.
go back to reference Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell. 2002;13:2795–809.CrossRefPubMedPubMedCentral Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell. 2002;13:2795–809.CrossRefPubMedPubMedCentral
17.
go back to reference Griffiths SJ. Screening for host proteins with pro- and antiviral activity using high-throughput RNAi. Methods Mol Biol. 2013;1064:71–90. Griffiths SJ. Screening for host proteins with pro- and antiviral activity using high-throughput RNAi. Methods Mol Biol. 2013;1064:71–90.
18.
go back to reference Kalbfleisch T, Cambon A, Wattenberg BW. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic. 2007;8:1687–94.CrossRefPubMed Kalbfleisch T, Cambon A, Wattenberg BW. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic. 2007;8:1687–94.CrossRefPubMed
19.
go back to reference Abell BM, Pool MR, Schlenker O, Sinning I, High S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 2004;23:2755–64.CrossRefPubMedPubMedCentral Abell BM, Pool MR, Schlenker O, Sinning I, High S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 2004;23:2755–64.CrossRefPubMedPubMedCentral
21.
go back to reference Colombo SF, Longhi R, Borgese N. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J Cell Sci. 2009;122:2383–92.CrossRefPubMed Colombo SF, Longhi R, Borgese N. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J Cell Sci. 2009;122:2383–92.CrossRefPubMed
22.
go back to reference Hogue IB, Scherer J, Enquist LW. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. MBio. 2016;7(3). Hogue IB, Scherer J, Enquist LW. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. MBio. 2016;7(3).
23.
go back to reference Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 2005;123:507–19.CrossRefPubMed Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell. 2005;123:507–19.CrossRefPubMed
24.
go back to reference Kao G, Nordenson C, Still M, Ronnlund A, Tuck S, Naredi P. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell. 2007;128:577–87.CrossRefPubMed Kao G, Nordenson C, Still M, Ronnlund A, Tuck S, Naredi P. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell. 2007;128:577–87.CrossRefPubMed
25.
go back to reference Salaun C, James DJ, Greaves J, Chamberlain LH. Plasma membrane targeting of exocytic SNARE proteins. Biochim Biophys Acta. 2004;1693:81–9. Salaun C, James DJ, Greaves J, Chamberlain LH. Plasma membrane targeting of exocytic SNARE proteins. Biochim Biophys Acta. 2004;1693:81–9.
26.
go back to reference Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–43. Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–43.
27.
go back to reference Cepeda V, Fraile-Ramos A. A role for the SNARE protein syntaxin 3 in human cytomegalovirus morphogenesis. Cell Microbiol. 2011;13:846–58.CrossRefPubMed Cepeda V, Fraile-Ramos A. A role for the SNARE protein syntaxin 3 in human cytomegalovirus morphogenesis. Cell Microbiol. 2011;13:846–58.CrossRefPubMed
28.
go back to reference Ushijima Y, Koshizuka T, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol. 2008;82:5220–33.CrossRefPubMedPubMedCentral Ushijima Y, Koshizuka T, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol. 2008;82:5220–33.CrossRefPubMedPubMedCentral
29.
go back to reference Kratchmarov R, Taylor MP, Enquist LW. Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol. 2012;22:378–91.CrossRefPubMedPubMedCentral Kratchmarov R, Taylor MP, Enquist LW. Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol. 2012;22:378–91.CrossRefPubMedPubMedCentral
30.
go back to reference Pfaff J, Rivera Monroy J, Jamieson C, Rajanala K, Vilardi F, et al. Emery-Dreifuss muscular dystrophy mutations impair TRC40-mediated targeting of emerin to the inner nuclear membrane. J Cell Sci. 2016;129:502–16.CrossRefPubMed Pfaff J, Rivera Monroy J, Jamieson C, Rajanala K, Vilardi F, et al. Emery-Dreifuss muscular dystrophy mutations impair TRC40-mediated targeting of emerin to the inner nuclear membrane. J Cell Sci. 2016;129:502–16.CrossRefPubMed
Metadata
Title
Asna1/TRC40 that mediates membrane insertion of tail-anchored proteins is required for efficient release of Herpes simplex virus 1 virions
Authors
Melanie Ott
Débora Marques
Christina Funk
Susanne M. Bailer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0638-8

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue