Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Short report

Responses of primary human nasal epithelial cells to EDIII-DENV stimulation: the first step to intranasal dengue vaccination

Authors: Nattika Nantachit, Panya Sunintaboon, Sukathida Ubol

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

About half of the world’s population are living in the endemic area of dengue viruses implying that a rapid-mass vaccination may be required. In addition, a major target of dengue vaccine are children, thus, a needle-free administration is more attractive. These problems may be overcome by the alternative route of vaccination such as topical, oral and intranasal vaccination. Here, we investigated the possibility to deliver a dengue immunogen intranasally, a painless route of vaccination. The tested immunogen was the domain III of dengue serotype-3 E protein (EDIII-D3) loaded into trimethyl chitosan nanoparticles (EDIII-D3 TMC NPs). The primary human nasal epithelial cells, HNEpCs, were used as an in vitro model for nasal responses.

Results

At tested concentrations, EDIII-D3 TMC NPs not only exerted no detectable toxicity toward HNEpC cultures but also efficiently delivered EDIII-D3 immunogens into HNEpCs. Moreover, HNEpCs quickly and strongly produced proinflammatory cytokines (IL-1β, IL-6, TNF-α), type-I IFN, the growth factors (GM-CSF, IL-7), the chemokines (MCP-1, MIP-1β, IL-8), Th1-related cytokines (IL-2, IL-12p70, IL-17, IFN-γ) and Th2-related cytokine (IL-4) in response to EDIII-D3 TMC NPs treatment.

Conclusions

A potential mucosal delivery system for dengue immunogens was revealed and found to stimulate a strong local innate antiviral response which possibly leading to a systemic adaptive immunity.
Literature
1.
go back to reference Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015;15:745–59.CrossRefPubMed Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol. 2015;15:745–59.CrossRefPubMed
2.
go back to reference Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv. 2015;12:993–1008.CrossRefPubMed Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv. 2015;12:993–1008.CrossRefPubMed
3.
go back to reference Pabst R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-Structure, function and species differences. Vaccine. 2015;33:4406–13.CrossRefPubMed Pabst R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-Structure, function and species differences. Vaccine. 2015;33:4406–13.CrossRefPubMed
5.
go back to reference Patel A, Patel M, Yang X, Mitra AK. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21:1102–20.CrossRefPubMedPubMedCentral Patel A, Patel M, Yang X, Mitra AK. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21:1102–20.CrossRefPubMedPubMedCentral
6.
go back to reference Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother. 2014;10:797–807.CrossRefPubMed Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother. 2014;10:797–807.CrossRefPubMed
7.
go back to reference Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.CrossRef Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.CrossRef
8.
go back to reference Hagenaars N, Verheul RJ, Mooren I, de Jong PH, Mastrobattista E, Glansbeek HL, et al. Relationship between structure and adjuvanticity of N, N, N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. J Control Release. 2009;140:126–33.CrossRefPubMed Hagenaars N, Verheul RJ, Mooren I, de Jong PH, Mastrobattista E, Glansbeek HL, et al. Relationship between structure and adjuvanticity of N, N, N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. J Control Release. 2009;140:126–33.CrossRefPubMed
9.
go back to reference Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slutter B, Amorij JP, et al. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine. 2012;30:5341–8.CrossRefPubMed Tafaghodi M, Saluja V, Kersten GF, Kraan H, Slutter B, Amorij JP, et al. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine. 2012;30:5341–8.CrossRefPubMed
10.
go back to reference Liu Q, Zheng X, Zhang C, Shao X, Zhang X, Zhang Q, et al. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J Med Virol. 2015;87:1807–15.CrossRefPubMed Liu Q, Zheng X, Zhang C, Shao X, Zhang X, Zhang Q, et al. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration. J Med Virol. 2015;87:1807–15.CrossRefPubMed
11.
go back to reference Lebre F, Borchard G, Faneca H. Pedroso de Lima MC, Borges O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to Hepatitis B surface antigen in mice. Mol Pharm. 2016;13:472–82.CrossRefPubMed Lebre F, Borchard G, Faneca H. Pedroso de Lima MC, Borges O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to Hepatitis B surface antigen in mice. Mol Pharm. 2016;13:472–82.CrossRefPubMed
12.
go back to reference Cevher E, Salomon SK, Somavarapu S, Brocchini S, Alpar HO. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul. 2015;32:769–83.CrossRefPubMed Cevher E, Salomon SK, Somavarapu S, Brocchini S, Alpar HO. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul. 2015;32:769–83.CrossRefPubMed
13.
go back to reference Hagenaars N, Mastrobattista E, Verheul RJ, Mooren I, Glansbeek HL, Heldens JG, et al. Physicochemical and immunological characterization of N, N, N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res. 2009;26:1353–64.CrossRefPubMed Hagenaars N, Mastrobattista E, Verheul RJ, Mooren I, Glansbeek HL, Heldens JG, et al. Physicochemical and immunological characterization of N, N, N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm Res. 2009;26:1353–64.CrossRefPubMed
14.
go back to reference Subbiah R, Ramalingam P, Ramasundaram S, Kim do Y, Park K, Ramasamy MK, et al. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89:1289–97.CrossRefPubMed Subbiah R, Ramalingam P, Ramasundaram S, Kim do Y, Park K, Ramasamy MK, et al. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89:1289–97.CrossRefPubMed
15.
go back to reference Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillen G. Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines. 2010;9:137–47.CrossRefPubMed Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillen G. Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines. 2010;9:137–47.CrossRefPubMed
16.
go back to reference Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol. 2001;75:7769–73.CrossRefPubMedPubMedCentral Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol. 2001;75:7769–73.CrossRefPubMedPubMedCentral
17.
go back to reference Chin JF, Chu JJ, Ng ML. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect. 2007;9:1–6.CrossRefPubMed Chin JF, Chu JJ, Ng ML. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect. 2007;9:1–6.CrossRefPubMed
18.
go back to reference Kaushik N, Rohila D, Arora U, Raut R, Lamminmaki U, Khanna N, et al. Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol. 2016;16:12.CrossRefPubMedPubMedCentral Kaushik N, Rohila D, Arora U, Raut R, Lamminmaki U, Khanna N, et al. Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol. 2016;16:12.CrossRefPubMedPubMedCentral
19.
go back to reference Batra G, Raut R, Dahiya S, Kamran N, Swaminathan S, Khanna N. Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. J Virol Methods. 2010;167:10–6.CrossRefPubMed Batra G, Raut R, Dahiya S, Kamran N, Swaminathan S, Khanna N. Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. J Virol Methods. 2010;167:10–6.CrossRefPubMed
20.
go back to reference Chen F, Zhang ZR, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm. 2007;336:166–73.CrossRefPubMed Chen F, Zhang ZR, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm. 2007;336:166–73.CrossRefPubMed
21.
go back to reference Hunsawong T, Sunintaboon P, Warit S, Thaisomboonsuk B, Jarman RG, Yoon IK, et al. Immunogenic properties of a BCG adjuvanted chitosan nanoparticle-based dengue vaccine in human dendritic cells. PLoS Negl Trop Dis. 2015;9, e0003958.CrossRefPubMedPubMedCentral Hunsawong T, Sunintaboon P, Warit S, Thaisomboonsuk B, Jarman RG, Yoon IK, et al. Immunogenic properties of a BCG adjuvanted chitosan nanoparticle-based dengue vaccine in human dendritic cells. PLoS Negl Trop Dis. 2015;9, e0003958.CrossRefPubMedPubMedCentral
22.
go back to reference Gao Y, Su Q, Yi Y, Jia Z, Wang H, Lu X, et al. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin. PLoS One. 2015;10, e0123400.CrossRefPubMedPubMedCentral Gao Y, Su Q, Yi Y, Jia Z, Wang H, Lu X, et al. Enhanced mucosal immune responses induced by a combined candidate mucosal vaccine based on Hepatitis A virus and Hepatitis E virus structural proteins linked to tuftsin. PLoS One. 2015;10, e0123400.CrossRefPubMedPubMedCentral
23.
go back to reference Khattar SK, Manoharan V, Bhattarai B, LaBranche CC, Montefiori DC, Samal SK. Mucosal immunization with newcastle disease virus vector coexpressing HIV-1 Env and Gag proteins elicits potent serum, mucosal, and cellular immune responses that protect against vaccinia virus Env and Gag challenges. MBio. 2015;6, e01005.CrossRefPubMedPubMedCentral Khattar SK, Manoharan V, Bhattarai B, LaBranche CC, Montefiori DC, Samal SK. Mucosal immunization with newcastle disease virus vector coexpressing HIV-1 Env and Gag proteins elicits potent serum, mucosal, and cellular immune responses that protect against vaccinia virus Env and Gag challenges. MBio. 2015;6, e01005.CrossRefPubMedPubMedCentral
24.
go back to reference Kim EH, Choi YK, Kim CJ, Sung MH, Poo H. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virol J. 2015;12:160.CrossRefPubMedPubMedCentral Kim EH, Choi YK, Kim CJ, Sung MH, Poo H. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virol J. 2015;12:160.CrossRefPubMedPubMedCentral
25.
go back to reference Lee YN, Hwang HS, Kim MC, Lee YT, Lee JS, Moore ML, et al. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Res. 2015;115:1–8.CrossRefPubMed Lee YN, Hwang HS, Kim MC, Lee YT, Lee JS, Moore ML, et al. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Res. 2015;115:1–8.CrossRefPubMed
26.
go back to reference Qin T, Yin Y, Huang L, Yu Q, Yang Q. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. Clin Vaccine Immunol. 2015;22:421–9.CrossRefPubMedPubMedCentral Qin T, Yin Y, Huang L, Yu Q, Yang Q. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. Clin Vaccine Immunol. 2015;22:421–9.CrossRefPubMedPubMedCentral
27.
go back to reference Trondsen M, Aqrawi LA, Zhou F, Pedersen G, Trieu MC, Zhou P, et al. Induction of local secretory IgA and multifunctional CD4(+) T-helper cells following intranasal immunization with a H5N1 whole inactivated influenza virus vaccine in BALB/c mice. Scand J Immunol. 2015;81:305–17.CrossRefPubMed Trondsen M, Aqrawi LA, Zhou F, Pedersen G, Trieu MC, Zhou P, et al. Induction of local secretory IgA and multifunctional CD4(+) T-helper cells following intranasal immunization with a H5N1 whole inactivated influenza virus vaccine in BALB/c mice. Scand J Immunol. 2015;81:305–17.CrossRefPubMed
28.
go back to reference Yang X, Zhao J, Wang C, Duan Y, Zhao Z, Chen R, et al. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge. PLoS One. 2015;10, e0123659.CrossRefPubMedPubMedCentral Yang X, Zhao J, Wang C, Duan Y, Zhao Z, Chen R, et al. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge. PLoS One. 2015;10, e0123659.CrossRefPubMedPubMedCentral
29.
go back to reference Sim AC, Lin W, Tan GK, Sim MS, Chow VT, Alonso S. Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine. 2008;26:1145–54.CrossRefPubMed Sim AC, Lin W, Tan GK, Sim MS, Chow VT, Alonso S. Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen. Vaccine. 2008;26:1145–54.CrossRefPubMed
30.
go back to reference Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.CrossRefPubMed Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.CrossRefPubMed
32.
go back to reference Hernandez JC, Latz E, Urcuqui-Inchima S. HIV-1 induces the first signal to activate the NLRP3 inflammasome in monocyte-derived macrophages. Intervirology. 2014;57:36–42.CrossRefPubMed Hernandez JC, Latz E, Urcuqui-Inchima S. HIV-1 induces the first signal to activate the NLRP3 inflammasome in monocyte-derived macrophages. Intervirology. 2014;57:36–42.CrossRefPubMed
33.
go back to reference O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol. 2013;13:453–60.CrossRefPubMed O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol. 2013;13:453–60.CrossRefPubMed
34.
go back to reference Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7:304ra142.CrossRefPubMed Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7:304ra142.CrossRefPubMed
35.
go back to reference Yang M, Flavin K, Kopf I, Radics G, Hearnden CH, McManus GJ, et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small. 2013;9:4194–206.CrossRefPubMed Yang M, Flavin K, Kopf I, Radics G, Hearnden CH, McManus GJ, et al. Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation. Small. 2013;9:4194–206.CrossRefPubMed
36.
go back to reference Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178:55–65.CrossRefPubMed Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178:55–65.CrossRefPubMed
Metadata
Title
Responses of primary human nasal epithelial cells to EDIII-DENV stimulation: the first step to intranasal dengue vaccination
Authors
Nattika Nantachit
Panya Sunintaboon
Sukathida Ubol
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0598-z

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue