Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Crystal structure of raptor adenovirus 1 fibre head and role of the beta-hairpin in siadenovirus fibre head domains

Authors: Thanh H. Nguyen, Mónika Z. Ballmann, Huyen T. Do, Hai N. Truong, Mária Benkő, Balázs Harrach, Mark J. van Raaij

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Most adenoviruses recognize their host cells via an interaction of their fibre head domains with a primary receptor. The structural framework of adenovirus fibre heads is conserved between the different adenovirus genera for which crystal structures have been determined (Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus), but genus-specific differences have also been observed. The only known siadenovirus fibre head structure, that of turkey adenovirus 3 (TAdV-3), revealed a twisted beta-sandwich resembling the reovirus fibre head architecture more than that of other adenovirus fibre heads, plus a unique beta-hairpin embracing a neighbouring monomer. The TAdV-3 fibre head was shown to bind sialyllactose.

Methods

Raptor adenovirus 1 (RAdV-1) fibre head was expressed, crystallized and its structure was solved and refined at 1.5 Å resolution. The structure could be solved by molecular replacement using the TAdV-3 fibre head structure as a search model, despite them sharing a sequence identity of only 19 %. Versions of both the RAdV-1 and TAdV-3 fibre heads with their beta-hairpin arm deleted were prepared and their stabilities were compared with the non-mutated proteins by a thermal unfolding assay.

Results

The structure of the RAdV-1 fibre head contains the same twisted ABCJ-GHID beta-sandwich and beta-hairpin arm as the TAdV-3 fibre head. However, while the predicted electro-potential surface charge of the TAdV-3 fibre head is mainly positive, the RAdV-1 fibre head shows positively and negatively charged patches and does not appear to bind sialyllactose. Deletion of the beta-hairpin arm does not affect the structure of the raptor adenovirus 1 fibre head and only affects the stability of the RAdV-1 and TAdV-3 fibre heads slightly.

Conclusions

The high-resolution structure of RAdV-1 fibre head is the second known structure of a siadenovirus fibre head domain. The structure shows that the siadenovirus fibre head structure is conserved, but differences in the predicted surface charge suggest that RAdV-1 uses a different natural receptor for cell attachment than TAdV-3. Deletion of the beta-hairpin arm shows little impact on the structure and stability of the siadenovirus fibre heads.
Literature
1.
go back to reference Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Exp Biol Med. 1953;84:570–3.CrossRef Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Exp Biol Med. 1953;84:570–3.CrossRef
2.
go back to reference Wold WS, Horwitz MS. Adenoviruses. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007. p. 2395–436. Wold WS, Horwitz MS. Adenoviruses. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007. p. 2395–436.
4.
go back to reference Waye MMY, Sing CW. Anti-viral drugs for human adenoviruses. Pharmaceuticals (Basel). 2010;3(10):3343–54.CrossRef Waye MMY, Sing CW. Anti-viral drugs for human adenoviruses. Pharmaceuticals (Basel). 2010;3(10):3343–54.CrossRef
5.
go back to reference Pihos AM. Epidemic keratoconjunctivitis: a review of current concepts in management. J Optom. 2013;6(2):69–74.CrossRef Pihos AM. Epidemic keratoconjunctivitis: a review of current concepts in management. J Optom. 2013;6(2):69–74.CrossRef
7.
go back to reference Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines. 2009;8(6):761–77.CrossRefPubMedPubMedCentral Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines. 2009;8(6):761–77.CrossRefPubMedPubMedCentral
8.
go back to reference Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol. 2010;8(1):62–73.CrossRefPubMed Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol. 2010;8(1):62–73.CrossRefPubMed
9.
go back to reference Yamamoto M, Curiel DT. Current issues and future directions of oncolytic adenoviruses. Mol Ther. 2010;18(2):243–50.CrossRefPubMed Yamamoto M, Curiel DT. Current issues and future directions of oncolytic adenoviruses. Mol Ther. 2010;18(2):243–50.CrossRefPubMed
10.
go back to reference Alonso-Padilla J, Papp T, Kaján GL, Benkő M, Havenga M, Lemckert A, et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs. Mol Ther. 2016;24(1):6–16.PubMed Alonso-Padilla J, Papp T, Kaján GL, Benkő M, Havenga M, Lemckert A, et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs. Mol Ther. 2016;24(1):6–16.PubMed
11.
go back to reference Davison AJ, Benkő M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol. 2003;84(Pt 11):2895–908.CrossRefPubMed Davison AJ, Benkő M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol. 2003;84(Pt 11):2895–908.CrossRefPubMed
12.
go back to reference Harrach B, Benkő M, Both GW, Brown M, Davison AJ, Echavarría M, et al. Family Adenoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. New York: Elsevier; 2011. p. 125–41. Harrach B, Benkő M, Both GW, Brown M, Davison AJ, Echavarría M, et al. Family Adenoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. New York: Elsevier; 2011. p. 125–41.
15.
go back to reference Zubieta C, Schoehn G, Chroboczek J, Cusack C. The structure of the human adenovirus 2 penton. Mol Cell. 2005;17(1):121–35.CrossRefPubMed Zubieta C, Schoehn G, Chroboczek J, Cusack C. The structure of the human adenovirus 2 penton. Mol Cell. 2005;17(1):121–35.CrossRefPubMed
16.
go back to reference Liu H, Wu L, Zhou ZH. Model of the trimeric fiber and its interactions with the pentameric penton base of human adenovirus by cryo-electron microscopy. J Mol Biol. 2011;406(5):764–74.CrossRefPubMed Liu H, Wu L, Zhou ZH. Model of the trimeric fiber and its interactions with the pentameric penton base of human adenovirus by cryo-electron microscopy. J Mol Biol. 2011;406(5):764–74.CrossRefPubMed
17.
go back to reference Hess M, Cuzange A, Ruigrok RW, Chroboczek J, Jacrot B. The avian adenovirus penton: two fibres and one base. J Mol Biol. 1995;252(4):379–85.CrossRefPubMed Hess M, Cuzange A, Ruigrok RW, Chroboczek J, Jacrot B. The avian adenovirus penton: two fibres and one base. J Mol Biol. 1995;252(4):379–85.CrossRefPubMed
18.
go back to reference Pénzes JJ, Menéndez-Conejero R, Condezo GN, Ball I, Papp T, Doszpoly A, et al. Molecular characterization of a lizard adenovirus reveals the first atadenovirus with two fiber genes and the first adenovirus with either one short or three long fibers per penton. J Virol. 2014;88(19):11304–14.CrossRefPubMedPubMedCentral Pénzes JJ, Menéndez-Conejero R, Condezo GN, Ball I, Papp T, Doszpoly A, et al. Molecular characterization of a lizard adenovirus reveals the first atadenovirus with two fiber genes and the first adenovirus with either one short or three long fibers per penton. J Virol. 2014;88(19):11304–14.CrossRefPubMedPubMedCentral
19.
go back to reference Chroboczek J, Ruigrok RW, Cusack S. Adenovirus fiber. Curr Top Microbiol Immunol. 1995;199(Pt 1):163–200.PubMed Chroboczek J, Ruigrok RW, Cusack S. Adenovirus fiber. Curr Top Microbiol Immunol. 1995;199(Pt 1):163–200.PubMed
20.
go back to reference van Raaij MJ, Mitraki A, Lavigne G, Cusack S. A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature. 1999;401(6756):935–8.CrossRefPubMed van Raaij MJ, Mitraki A, Lavigne G, Cusack S. A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature. 1999;401(6756):935–8.CrossRefPubMed
21.
22.
go back to reference Cheville N, Sato S. Pathology of adenoviral infection in turkeys (Meleagris gallopavo) with respiratory disease and colisepticemia. Vet Pathol. 1977;14(6):567–81.PubMed Cheville N, Sato S. Pathology of adenoviral infection in turkeys (Meleagris gallopavo) with respiratory disease and colisepticemia. Vet Pathol. 1977;14(6):567–81.PubMed
23.
go back to reference Beach NM, Duncan RB, Larsen CT, Meng XJ, Srianganathan N, Pierson FW. Persistent infection of turkeys with an avirulent strain of turkey hemorrhagic enteritis virus. Avian Dis. 2009;53(3):370–5.CrossRefPubMed Beach NM, Duncan RB, Larsen CT, Meng XJ, Srianganathan N, Pierson FW. Persistent infection of turkeys with an avirulent strain of turkey hemorrhagic enteritis virus. Avian Dis. 2009;53(3):370–5.CrossRefPubMed
24.
go back to reference Kovács ER, Benkő M. Confirmation of a novel siadenovirus species detected in raptors: partial sequence and phylogenetic analysis. Virus Res. 2009;140(1-2):64–70.CrossRefPubMed Kovács ER, Benkő M. Confirmation of a novel siadenovirus species detected in raptors: partial sequence and phylogenetic analysis. Virus Res. 2009;140(1-2):64–70.CrossRefPubMed
25.
go back to reference Kovács ER, Benkő M. Complete sequence of raptor adenovirus 1 confirms the characteristic genome organization of siadenoviruses. Infect Genet Evol. 2011;11(5):1058–65.CrossRefPubMed Kovács ER, Benkő M. Complete sequence of raptor adenovirus 1 confirms the characteristic genome organization of siadenoviruses. Infect Genet Evol. 2011;11(5):1058–65.CrossRefPubMed
26.
go back to reference Zsivanovits P, Monks DJ, Forbes NA, Ursu K, Raue R, Benkő M. Presumptive identification of a novel adenovirus in a Harris Hawk (Parabuteo unicinctus), a Bengal Eagle Owl (Bubo bengalensis), and a Verreaux’s Eagle Owl (Bubo lacteus). J Avian Med Surg. 2006;20(2):105–12.CrossRef Zsivanovits P, Monks DJ, Forbes NA, Ursu K, Raue R, Benkő M. Presumptive identification of a novel adenovirus in a Harris Hawk (Parabuteo unicinctus), a Bengal Eagle Owl (Bubo bengalensis), and a Verreaux’s Eagle Owl (Bubo lacteus). J Avian Med Surg. 2006;20(2):105–12.CrossRef
28.
go back to reference Seiradake E, Lortat-Jacob H, Billet O, Kremer EJ, Cusack S. Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the D1 domain of coxsackie and adenovirus receptor. J Biol Chem. 2006;281:33704–16.CrossRefPubMed Seiradake E, Lortat-Jacob H, Billet O, Kremer EJ, Cusack S. Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the D1 domain of coxsackie and adenovirus receptor. J Biol Chem. 2006;281:33704–16.CrossRefPubMed
29.
go back to reference Guardado-Calvo P, Llamas-Saiz AL, Fox GC, Langlois P, van Raaij MJ. Structure of the C-terminal head domain of the fowl adenovirus type 1 long fiber. J Gen Virol. 2007;88(Pt 9):2407–16.CrossRefPubMed Guardado-Calvo P, Llamas-Saiz AL, Fox GC, Langlois P, van Raaij MJ. Structure of the C-terminal head domain of the fowl adenovirus type 1 long fiber. J Gen Virol. 2007;88(Pt 9):2407–16.CrossRefPubMed
30.
go back to reference El Bakkouri M, Seiradake E, Cusack S, Ruigrok RW, Schoehn G. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre. Virology. 2008;378(1):169–76.CrossRefPubMed El Bakkouri M, Seiradake E, Cusack S, Ruigrok RW, Schoehn G. Structure of the C-terminal head domain of the fowl adenovirus type 1 short fibre. Virology. 2008;378(1):169–76.CrossRefPubMed
31.
go back to reference Guardado-Calvo P, Muñoz EM, Llamas-Saiz AL, Fox GC, Kahn R, Curiel DT, et al. Crystallographic structure of porcine adenovirus type 4 fiber head and galectin domains. J Virol. 2010;84(20):10558–68.CrossRefPubMedPubMedCentral Guardado-Calvo P, Muñoz EM, Llamas-Saiz AL, Fox GC, Kahn R, Curiel DT, et al. Crystallographic structure of porcine adenovirus type 4 fiber head and galectin domains. J Virol. 2010;84(20):10558–68.CrossRefPubMedPubMedCentral
32.
go back to reference Singh AK, Menéndez-Conejero R, San Martín C, van Raaij MJ. Crystal structure of the fibre head domain of the atadenovirus snake adenovirus 1. PLoS One. 2014;9(12):e114373.CrossRefPubMedPubMedCentral Singh AK, Menéndez-Conejero R, San Martín C, van Raaij MJ. Crystal structure of the fibre head domain of the atadenovirus snake adenovirus 1. PLoS One. 2014;9(12):e114373.CrossRefPubMedPubMedCentral
33.
go back to reference Nguyen TH, Vidovszky MZ, Ballmann MZ, Sanz-Gaitero M, Singh AK, Harrach B, et al. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus. Virol J. 2015;12:81.CrossRefPubMedPubMedCentral Nguyen TH, Vidovszky MZ, Ballmann MZ, Sanz-Gaitero M, Singh AK, Harrach B, et al. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus. Virol J. 2015;12:81.CrossRefPubMedPubMedCentral
34.
go back to reference Singh AK, Berbís MÁ, Ballmann MZ, Kilcoyne M, Menéndez M, Nguyen TH, et al. Structure and sialyllactose binding of the carboxy-terminal head domain of the fibre from a siadenovirus, turkey adenovirus 3. PLoS One. 2015;10(9):e0139339.CrossRefPubMedPubMedCentral Singh AK, Berbís MÁ, Ballmann MZ, Kilcoyne M, Menéndez M, Nguyen TH, et al. Structure and sialyllactose binding of the carboxy-terminal head domain of the fibre from a siadenovirus, turkey adenovirus 3. PLoS One. 2015;10(9):e0139339.CrossRefPubMedPubMedCentral
35.
go back to reference Chappell JD, Prota AE, Dermody TS, Stehly T. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 2002;21(1-2):1–11.CrossRefPubMedPubMedCentral Chappell JD, Prota AE, Dermody TS, Stehly T. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 2002;21(1-2):1–11.CrossRefPubMedPubMedCentral
36.
go back to reference Guardado-Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, et al. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol. 2005;354(1):137–49.CrossRefPubMed Guardado-Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, et al. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J Mol Biol. 2005;354(1):137–49.CrossRefPubMed
38.
go back to reference Park YM, Kim JH, Gu SH, Lee SY, Lee MG, Kang YK, et al. Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology. 2012;422(1):144–50.CrossRefPubMed Park YM, Kim JH, Gu SH, Lee SY, Lee MG, Kang YK, et al. Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology. 2012;422(1):144–50.CrossRefPubMed
39.
go back to reference Davison AJ, Wright KM, Harrach B. DNA sequence of frog adenovirus. J Gen Virol. 2000;81(Pt 10):2431–9.CrossRefPubMed Davison AJ, Wright KM, Harrach B. DNA sequence of frog adenovirus. J Gen Virol. 2000;81(Pt 10):2431–9.CrossRefPubMed
40.
go back to reference Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci. 2012;33(8):442–8.CrossRefPubMed Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci. 2012;33(8):442–8.CrossRefPubMed
41.
go back to reference Singh AK, Ballmann MZ, Benkő M, Harrach B, van Raaij MJ. Crystallization of the C-terminal head domain of the fibre protein from a siadenovirus, turkey adenovirus 3. Acta Cryst F. 2013;69(Pt 10):1135–9.CrossRef Singh AK, Ballmann MZ, Benkő M, Harrach B, van Raaij MJ. Crystallization of the C-terminal head domain of the fibre protein from a siadenovirus, turkey adenovirus 3. Acta Cryst F. 2013;69(Pt 10):1135–9.CrossRef
42.
go back to reference Dupeux F, Röwer M, Seroul G, Blot D, Márquez JA. A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Cryst D. 2011;67(Pt 11):915–9.CrossRef Dupeux F, Röwer M, Seroul G, Blot D, Márquez JA. A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Cryst D. 2011;67(Pt 11):915–9.CrossRef
43.
go back to reference Juanhuix J, Gil-Ortiz F, Cuní G, Colldelram C, Nicolás J, Lidón J, et al. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the Alba Synchrotron. J Synchrotron Radiat. 2014;21(Pt 4):679–89.CrossRefPubMedPubMedCentral Juanhuix J, Gil-Ortiz F, Cuní G, Colldelram C, Nicolás J, Lidón J, et al. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the Alba Synchrotron. J Synchrotron Radiat. 2014;21(Pt 4):679–89.CrossRefPubMedPubMedCentral
44.
go back to reference Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Cryst D. 2011;67(Pt 4):271–81.CrossRef Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Cryst D. 2011;67(Pt 4):271–81.CrossRef
45.
go back to reference Evans PR. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Cryst D. 2011;67(Pt 4):282–92.CrossRef Evans PR. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Cryst D. 2011;67(Pt 4):282–92.CrossRef
46.
go back to reference Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley O, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Cryst D. 2011;67(Pt 4):235–42.CrossRef Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley O, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Cryst D. 2011;67(Pt 4):235–42.CrossRef
47.
go back to reference McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40:658–74. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40:658–74.
48.
go back to reference Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc. 2008;3(7):1171–9.CrossRefPubMedPubMedCentral Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc. 2008;3(7):1171–9.CrossRefPubMedPubMedCentral
49.
go back to reference Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Cryst D. 2010;66(Pt 4):486–501.CrossRef Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Cryst D. 2010;66(Pt 4):486–501.CrossRef
50.
go back to reference Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D. 2011;67(Pt 4):355–67.CrossRef Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D. 2011;67(Pt 4):355–67.CrossRef
51.
go back to reference Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst D. 2010;66(Pt 1):12–21.CrossRef Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst D. 2010;66(Pt 1):12–21.CrossRef
52.
go back to reference Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97.CrossRefPubMed Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97.CrossRefPubMed
Metadata
Title
Crystal structure of raptor adenovirus 1 fibre head and role of the beta-hairpin in siadenovirus fibre head domains
Authors
Thanh H. Nguyen
Mónika Z. Ballmann
Huyen T. Do
Hai N. Truong
Mária Benkő
Balázs Harrach
Mark J. van Raaij
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0558-7

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue