Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway

Authors: Xiao-Ying Dong, Sheng-Qiu Tang

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of the pigs. A number of studies have suggested that CSFV non-structural (NS) 5A protein is involved in CSFV-associated pathogenesis, but its mechanism is still uncertain. The aim of this study was to investigate the roles of NS5A protein in CSFV-associated pathogenesis in cultured porcine alveolar macrophages (PAMs).

Methods

After PAMs cultured in vitro were transfected with CSFV NS5A, the alterations in IL-1β, IL-6 and TNF-α expression were determined by ELISA, the RIG-I signaling activity related to inflammatory cytokine secretion was investigated by Western blot and Immunofluorescent staining.

Results

It was suggested that, the stable expressed CSFV NS5A solely had no influence on the expressions of inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs Moreover, NS5A protein could suppressed IL-1β, IL-6 and TNF-α expression induced by poly(I:C). It was also showed that NS5A protein did not impair the expressions of RIG-I, MDA5, IPS-1, NF-κB and IkBα in cells without poly(I:C) stimulation. Protein expressions of RIG-I, MDA5, IPS-1, NF-κB were not disrupted by NS5A protein in poly(I:C)-stimulated cells, while poly(I:C)-induced NF-κB nuclear translocation and activity was obviously suppressed by this protein. A suppression in poly(I:C)-induced IkBα degradation in NS5A-expressing cells was also observed.

Conclusion

These data indicated that CSFV NS5A protein could inhibit the secretion of inflammatory cytokine induced by poly(I:C) through the suppression of the NF-κB signaling pathway, indicating the participation of CSFV NS5A protein in the pathogenesis of CSFV.
Literature
1.
go back to reference Konig M, Lengsfeld T, Pauly T, Stark R, Thiel HJ. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol. 1995;69:6479–86.PubMedPubMedCentral Konig M, Lengsfeld T, Pauly T, Stark R, Thiel HJ. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol. 1995;69:6479–86.PubMedPubMedCentral
2.
go back to reference Meyers G, Rumenapf T, Thiel HJ. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989;171:555–67.CrossRefPubMed Meyers G, Rumenapf T, Thiel HJ. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989;171:555–67.CrossRefPubMed
3.
go back to reference Stark R, Meyers G, Rumenapf T, Thiel HJ. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol. 1993;67:7088–95.PubMedPubMedCentral Stark R, Meyers G, Rumenapf T, Thiel HJ. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol. 1993;67:7088–95.PubMedPubMedCentral
4.
go back to reference Sheng C, Zhu Z, Yu J, Wan L, Wang Y, Chen J, Gu F, Xiao M. Characterization of NS3, NS5A and NS5B of classical swine fever virus through mutation and complementation analysis. Vet Microbiol. 2010;140:72–80.CrossRefPubMed Sheng C, Zhu Z, Yu J, Wan L, Wang Y, Chen J, Gu F, Xiao M. Characterization of NS3, NS5A and NS5B of classical swine fever virus through mutation and complementation analysis. Vet Microbiol. 2010;140:72–80.CrossRefPubMed
5.
go back to reference He L, Zhang YM, Lin Z, Li WW, Wang J, Li HL. Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes. 2012;45:274–82.CrossRefPubMed He L, Zhang YM, Lin Z, Li WW, Wang J, Li HL. Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes. 2012;45:274–82.CrossRefPubMed
6.
go back to reference Xiao M, Wang Y, Zhu Z, Yu J, Wan L, Chen J. Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation. J Gen Virol. 2009;90:2923–8.CrossRefPubMed Xiao M, Wang Y, Zhu Z, Yu J, Wan L, Chen J. Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation. J Gen Virol. 2009;90:2923–8.CrossRefPubMed
7.
go back to reference Chen Y, Xiao J, Xiao J, Sheng C, Wang J, Jia L, Zhi Y, Li G, Chen J, Xiao M. Classical swine fever virus NS5A regulates viral RNA replication through binding to NS5B and 3'UTR. Virology. 2012;432:376–88.CrossRefPubMed Chen Y, Xiao J, Xiao J, Sheng C, Wang J, Jia L, Zhi Y, Li G, Chen J, Xiao M. Classical swine fever virus NS5A regulates viral RNA replication through binding to NS5B and 3'UTR. Virology. 2012;432:376–88.CrossRefPubMed
8.
go back to reference Li H, Zhang C, Cui H, Guo K, Wang F, Zhao T, Liang W, Lv Q, Zhang Y. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication. Virus Genes. 2016;52:99–106.CrossRefPubMed Li H, Zhang C, Cui H, Guo K, Wang F, Zhao T, Liang W, Lv Q, Zhang Y. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication. Virus Genes. 2016;52:99–106.CrossRefPubMed
9.
go back to reference Sheng C, Chen Y, Xiao J, Xiao J, Wang J, Li G, Chen J, Xiao M. Classical swine fever virus NS5A protein interacts with 3'-untranslated region and regulates viral RNA synthesis. Virus Res. 2012;163:636–43.CrossRefPubMed Sheng C, Chen Y, Xiao J, Xiao J, Wang J, Li G, Chen J, Xiao M. Classical swine fever virus NS5A protein interacts with 3'-untranslated region and regulates viral RNA synthesis. Virus Res. 2012;163:636–43.CrossRefPubMed
10.
go back to reference Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10:93–110.CrossRefPubMed Pei J, Zhao M, Ye Z, Gou H, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy. 2014;10:93–110.CrossRefPubMed
11.
go back to reference Xiang J, McLinden JH, Chang Q, Jordan EL, Stapleton JT. Characterization of a peptide domain within the GB virus C NS5A phosphoprotein that inhibits HIV replication. PLoS One. 2008;3:e2580.CrossRefPubMedPubMedCentral Xiang J, McLinden JH, Chang Q, Jordan EL, Stapleton JT. Characterization of a peptide domain within the GB virus C NS5A phosphoprotein that inhibits HIV replication. PLoS One. 2008;3:e2580.CrossRefPubMedPubMedCentral
12.
go back to reference Grassmann CW, Isken O, Tautz N, Behrens SE. Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J Virol. 2001;75:7791–802.CrossRefPubMedPubMedCentral Grassmann CW, Isken O, Tautz N, Behrens SE. Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J Virol. 2001;75:7791–802.CrossRefPubMedPubMedCentral
13.
go back to reference Appel N, Herian U, Bartenschlager R. Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol. 2005;79:896–909.CrossRefPubMedPubMedCentral Appel N, Herian U, Bartenschlager R. Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol. 2005;79:896–909.CrossRefPubMedPubMedCentral
14.
go back to reference Ullah S, Rehman HU, Idrees M. Mutations in the NS5A gene are associated with response to interferon + ribavirin combination therapy in patients with chronic hepatitis C virus 3a infection. Eur J Gastroenterol Hepatol. 2013;25:1146–51.PubMed Ullah S, Rehman HU, Idrees M. Mutations in the NS5A gene are associated with response to interferon + ribavirin combination therapy in patients with chronic hepatitis C virus 3a infection. Eur J Gastroenterol Hepatol. 2013;25:1146–51.PubMed
15.
go back to reference Girard S, Shalhoub P, Lescure P, Sabile A, Misek DE, Hanash S, Brechot C, Beretta L. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology. 2002;295:272–83.CrossRefPubMed Girard S, Shalhoub P, Lescure P, Sabile A, Misek DE, Hanash S, Brechot C, Beretta L. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology. 2002;295:272–83.CrossRefPubMed
16.
go back to reference Kriegs M, Burckstummer T, Himmelsbach K, Bruns M, Frelin L, Ahlen G, Sallberg M, Hildt E. The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. J Biol Chem. 2009;284:28343–51.CrossRefPubMedPubMedCentral Kriegs M, Burckstummer T, Himmelsbach K, Bruns M, Frelin L, Ahlen G, Sallberg M, Hildt E. The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. J Biol Chem. 2009;284:28343–51.CrossRefPubMedPubMedCentral
17.
go back to reference Ghosh AK, Steele R, Meyer K, Ray R, Ray RB. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol. 1999;80:1179–83.CrossRefPubMed Ghosh AK, Steele R, Meyer K, Ray R, Ray RB. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol. 1999;80:1179–83.CrossRefPubMed
18.
go back to reference Yoneyama M, Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem. 2007;282:15315–8.CrossRefPubMed Yoneyama M, Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem. 2007;282:15315–8.CrossRefPubMed
20.
21.
go back to reference Yamaguchi S, Kitagawa M, Inoue M, Tomizawa N, Kamiyama R, Hirokawa K. Cell dynamics and expression of tumor necrosis factor (TNF)-alpha, interleukin-6, and TNF receptors in angioimmunoblastic lymphadenopathy-type T cell lymphoma. Exp Mol Pathol. 2000;68:85–94.CrossRefPubMed Yamaguchi S, Kitagawa M, Inoue M, Tomizawa N, Kamiyama R, Hirokawa K. Cell dynamics and expression of tumor necrosis factor (TNF)-alpha, interleukin-6, and TNF receptors in angioimmunoblastic lymphadenopathy-type T cell lymphoma. Exp Mol Pathol. 2000;68:85–94.CrossRefPubMed
22.
go back to reference Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis ESC, Matsuura Y, Fujita T, Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5.CrossRefPubMed Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis ESC, Matsuura Y, Fujita T, Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5.CrossRefPubMed
23.
go back to reference Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.CrossRefPubMed Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.CrossRefPubMed
25.
go back to reference Kuriyan J, Thanos D. Structure of the NF-kappa B transcription factor: a holistic interaction with DNA. Structure. 1995;3:135–41.CrossRefPubMed Kuriyan J, Thanos D. Structure of the NF-kappa B transcription factor: a holistic interaction with DNA. Structure. 1995;3:135–41.CrossRefPubMed
26.
go back to reference Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the biological context of NS5A-host interactions in HCV infection: a network-based approach. J Proteome Res. 2013;12:2537–51.CrossRefPubMed Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the biological context of NS5A-host interactions in HCV infection: a network-based approach. J Proteome Res. 2013;12:2537–51.CrossRefPubMed
27.
go back to reference Kumthip K, Chusri P, Jilg N, Zhao L, Fusco DN, Zhao H, Goto K, Cheng D, Schaefer EA, Zhang L, Pantip C, Thongsawat S, O'Brien A, Peng LF, Maneekarn N, Chung RT, Lin W. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J Virol. 2012;86:8581–91.CrossRefPubMedPubMedCentral Kumthip K, Chusri P, Jilg N, Zhao L, Fusco DN, Zhao H, Goto K, Cheng D, Schaefer EA, Zhang L, Pantip C, Thongsawat S, O'Brien A, Peng LF, Maneekarn N, Chung RT, Lin W. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J Virol. 2012;86:8581–91.CrossRefPubMedPubMedCentral
28.
go back to reference Wang Q, Wang Y, Li Y, Gao X, Liu S, Cheng J. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV) Nonstructural Protein 5A (NS5A) via MEK/Extracellular Signal Regulated Kinase (ERK) Pathway. Int J Mol Sci. 2013;14:10539–51.CrossRefPubMedPubMedCentral Wang Q, Wang Y, Li Y, Gao X, Liu S, Cheng J. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV) Nonstructural Protein 5A (NS5A) via MEK/Extracellular Signal Regulated Kinase (ERK) Pathway. Int J Mol Sci. 2013;14:10539–51.CrossRefPubMedPubMedCentral
29.
go back to reference Deng L, Shoji I, Ogawa W, Kaneda S, Soga T, Jiang DP, Ide YH, Hotta H. Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol. 2011;85:8556–68.CrossRefPubMedPubMedCentral Deng L, Shoji I, Ogawa W, Kaneda S, Soga T, Jiang DP, Ide YH, Hotta H. Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol. 2011;85:8556–68.CrossRefPubMedPubMedCentral
30.
go back to reference Wu SC, Chang SC, Wu HY, Liao PJ, Chang MF. Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway. J Biol Chem. 2008;283:29396–404.CrossRefPubMedPubMedCentral Wu SC, Chang SC, Wu HY, Liao PJ, Chang MF. Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway. J Biol Chem. 2008;283:29396–404.CrossRefPubMedPubMedCentral
31.
go back to reference Jiang YF, He B, Li NP, Ma J, Gong GZ, Zhang M. The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-kappaB pathways. Cell Biol Int. 2011;35:1225–32.CrossRefPubMed Jiang YF, He B, Li NP, Ma J, Gong GZ, Zhang M. The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-kappaB pathways. Cell Biol Int. 2011;35:1225–32.CrossRefPubMed
32.
go back to reference Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY, Lee SD. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002;21:4801–11.CrossRefPubMed Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY, Lee SD. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 2002;21:4801–11.CrossRefPubMed
33.
go back to reference Chowdhury JB, Kim H, Ray R, Ray RB. Hepatitis C Virus NS5A Protein Modulates IRF-7-Mediated Interferon-alpha Signaling. J Interferon Cytokine Res. 2014;34:16–21.CrossRefPubMedPubMedCentral Chowdhury JB, Kim H, Ray R, Ray RB. Hepatitis C Virus NS5A Protein Modulates IRF-7-Mediated Interferon-alpha Signaling. J Interferon Cytokine Res. 2014;34:16–21.CrossRefPubMedPubMedCentral
34.
go back to reference Park CY, Choi SH, Kang SM, Kang JI, Ahn BY, Kim H, Jung G, Choi KY, Hwang SB. Nonstructural 5A protein activates beta-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis. J Hepatol. 2009;51:853–64.CrossRefPubMed Park CY, Choi SH, Kang SM, Kang JI, Ahn BY, Kim H, Jung G, Choi KY, Hwang SB. Nonstructural 5A protein activates beta-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis. J Hepatol. 2009;51:853–64.CrossRefPubMed
35.
go back to reference Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem. 2003;278:40778–87.CrossRefPubMed Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease. J Biol Chem. 2003;278:40778–87.CrossRefPubMed
36.
go back to reference Poeck H, Ruland J. From virus to inflammation: mechanisms of RIG-I-induced IL-1beta production. Eur J Cell Biol. 2012;91:59–64.CrossRefPubMed Poeck H, Ruland J. From virus to inflammation: mechanisms of RIG-I-induced IL-1beta production. Eur J Cell Biol. 2012;91:59–64.CrossRefPubMed
37.
go back to reference Fett JD. Inflammation and virus in dilated cardiomyopathy as indicated by endomyocardial biopsy. Int J Cardiol. 2006;112:125–6.CrossRefPubMed Fett JD. Inflammation and virus in dilated cardiomyopathy as indicated by endomyocardial biopsy. Int J Cardiol. 2006;112:125–6.CrossRefPubMed
38.
go back to reference Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullough KC. Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology. 1999;97:359–66.CrossRefPubMedPubMedCentral Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullough KC. Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology. 1999;97:359–66.CrossRefPubMedPubMedCentral
39.
go back to reference Tanaka S, Mannen K. Role of IL-6 and IL-1beta in reactivation by acetylcholine of latently infecting pseudorabies virus. Exp Anim. 2004;53:457–61.CrossRefPubMed Tanaka S, Mannen K. Role of IL-6 and IL-1beta in reactivation by acetylcholine of latently infecting pseudorabies virus. Exp Anim. 2004;53:457–61.CrossRefPubMed
40.
go back to reference Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, Omata M. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int. 2007;1:302–10.CrossRefPubMedPubMedCentral Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, Omata M. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int. 2007;1:302–10.CrossRefPubMedPubMedCentral
41.
go back to reference Lan KH, Lan KL, Lee WP, Sheu ML, Chen MY, Lee YL, Yen SH, Chang FY, Lee SD. HCV NS5A inhibits interferon-alpha signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J Hepatol. 2007;46:759–67.CrossRefPubMed Lan KH, Lan KL, Lee WP, Sheu ML, Chen MY, Lee YL, Yen SH, Chang FY, Lee SD. HCV NS5A inhibits interferon-alpha signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J Hepatol. 2007;46:759–67.CrossRefPubMed
42.
go back to reference Bobardt M, Hopkins S, Baugh J, Chatterji U, Hernandez F, Hiscott J, Sluder A, Lin K, Gallay PA. HCV NS5A and IRF9 compete for CypA binding. J Hepatol. 2013;58:16–23.CrossRefPubMed Bobardt M, Hopkins S, Baugh J, Chatterji U, Hernandez F, Hiscott J, Sluder A, Lin K, Gallay PA. HCV NS5A and IRF9 compete for CypA binding. J Hepatol. 2013;58:16–23.CrossRefPubMed
43.
go back to reference von Rosen T, Lohse L, Nielsen J, Uttenthal A. Classical swine fever virus infection modulates serum levels of INF-alpha, IL-8 and TNF-alpha in 6-month-old pigs. Res Vet Sci. 2013;95:1262–7.CrossRef von Rosen T, Lohse L, Nielsen J, Uttenthal A. Classical swine fever virus infection modulates serum levels of INF-alpha, IL-8 and TNF-alpha in 6-month-old pigs. Res Vet Sci. 2013;95:1262–7.CrossRef
44.
go back to reference Dong XY, Liu WJ, Zhao MQ, Wang JY, Pei JJ, Luo YW, Ju CM Chen JD. Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-kappaB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. Virol J. 2013;10:286.CrossRefPubMedPubMedCentral Dong XY, Liu WJ, Zhao MQ, Wang JY, Pei JJ, Luo YW, Ju CM Chen JD. Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-kappaB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. Virol J. 2013;10:286.CrossRefPubMedPubMedCentral
45.
go back to reference Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7:241–8.CrossRefPubMed Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol. 2007;7:241–8.CrossRefPubMed
Metadata
Title
Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway
Authors
Xiao-Ying Dong
Sheng-Qiu Tang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0545-z

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue