Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt

Authors: Abdelsatar Arafa, Ihab El-Masry, Shereen Kholosy, Mohammed K. Hassan, Gwenaelle Dauphin, Juan Lubroth, Yilma J. Makonnen

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are widely distributed within poultry populations in Egypt and have caused multiple human infections. Linking the epidemiological and sequence data is important to understand the transmission, persistence and evolution of the virus. This work describes the phylogenetic dynamics of H5N1 based on molecular characterization of the hemagglutinin (HA) gene of isolates collected from February 2006 to May 2014.

Methods

Full-length HA sequences of 368 H5N1 viruses were generated and were genetically analysed to study their genetic evolution. They were collected from different poultry species, production sectors, and geographic locations in Egypt. The Bayesian Markov Chain Monte Carlo (BMCMC) method was applied to estimate the evolutionary rates among different virus clusters; additionally, an analysis of selection pressures in the HA gene was performed using the Single Likelihood Ancestor Counting (SLAC) method.

Results

The phylogenetic analysis of the H5 gene from 2006–14 indicated the presence of one virus introduction of the classic clade (2.2.1) from which two main subgroups were originated, the variant subgroup which was further subdivided into 2 sub-divisions (2.2.1.1 and 2.2.1.1a) and the endemic subgroup (2.2.1.2). The clade 2.2.1.2 showed a high evolution rate over a period of 6 years (6.9 × 10−3 sub/site/year) in comparison to the 2.2.1.1a variant cluster (7.2 × 10−3 over a period of 4 years). Those two clusters are under positive selection as they possess 5 distinct positively selected sites in the HA gene. The mutations at 120, 154, and 162 HA antigenic sites and the other two mutations (129∆, I151T) that occurred from 2009–14 were found to be stable in the 2.2.1.2 clade. Additionally, 13 groups of H5N1 HPAI viruses were identified based on their amino acid sequences at the cleavage site and “EKRRKKR” became the dominant pattern beginning in 2013.

Conclusions

Continuous evolution of H5N1 HPAI viruses in Egypt has been observed in all poultry farming and production systems in almost all regions of the country. The wide circulation of the 2.2.1.2 clade carrying triple mutations (120, 129∆, I151T) associated with increased binding affinity to human receptors is an alarming finding of public health importance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen R, Holmes EC. Avian Influenza exhibits rapid evolutionary dynamics. Mol Biol Evol. 2006;23:2336–41.CrossRefPubMed Chen R, Holmes EC. Avian Influenza exhibits rapid evolutionary dynamics. Mol Biol Evol. 2006;23:2336–41.CrossRefPubMed
2.
go back to reference Aly MM, Arafa A, Hassan MK. Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. Avian Dis. 2008;52:269–77.CrossRefPubMed Aly MM, Arafa A, Hassan MK. Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. Avian Dis. 2008;52:269–77.CrossRefPubMed
3.
go back to reference Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N, et al. Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. Euro Surveill. 2015;20(13):2–8.CrossRefPubMed Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N, et al. Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. Euro Surveill. 2015;20(13):2–8.CrossRefPubMed
4.
go back to reference Abdel-Moneim AS, Shany SA, Fereidouni SR, Eid BT, El-Kady MF, Starick E, et al. Sequence diversity of the haemagglutinin open reading frame of recent highly pathogenic avian influenza H5N1 isolates from Egypt. Arch Virol. 2009;154:1559–62.CrossRefPubMed Abdel-Moneim AS, Shany SA, Fereidouni SR, Eid BT, El-Kady MF, Starick E, et al. Sequence diversity of the haemagglutinin open reading frame of recent highly pathogenic avian influenza H5N1 isolates from Egypt. Arch Virol. 2009;154:1559–62.CrossRefPubMed
5.
go back to reference Arafa A, Suarez DL, Hassan MK, Aly MM. Phylogenetic analysis of HA and NA genes of HPAI-H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages. Avian Dis. 2010;54:345–9.CrossRefPubMed Arafa A, Suarez DL, Hassan MK, Aly MM. Phylogenetic analysis of HA and NA genes of HPAI-H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages. Avian Dis. 2010;54:345–9.CrossRefPubMed
6.
go back to reference Donis RO, Smith GJ. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014.World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Influenza Other Respir Viruses. 2015 May 12. doi: 10.1111/irv.12324. [Epub ahead of print]. Donis RO, Smith GJ. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014.World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Influenza Other Respir Viruses. 2015 May 12. doi: 10.​1111/​irv.​12324. [Epub ahead of print].
7.
go back to reference Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 2008;4(9):e1000161.CrossRefPubMedPubMedCentral Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, Chen H, et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 2008;4(9):e1000161.CrossRefPubMedPubMedCentral
9.
go back to reference WHO/ OIE/ FAO H5N1 Evolution Working Group. Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses. 2014;8(3):384–8.CrossRef WHO/ OIE/ FAO H5N1 Evolution Working Group. Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses. 2014;8(3):384–8.CrossRef
10.
go back to reference El-Zoghby EF, Aly MM, Nasef SA, Hassan MK, Arafa AS, Selim AA, et al. Surveillance on A/H5N1 virus in domestic poultry and wild birds in Egypt. Virol J. 2013;10:203.CrossRefPubMedPubMedCentral El-Zoghby EF, Aly MM, Nasef SA, Hassan MK, Arafa AS, Selim AA, et al. Surveillance on A/H5N1 virus in domestic poultry and wild birds in Egypt. Virol J. 2013;10:203.CrossRefPubMedPubMedCentral
11.
go back to reference El-Shesheny R, Kandeil A, Bagato O, Maatouq AM, Moatasim Y, Rubrum A, et al. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J Gen Virol. 2014;95:1444–63.CrossRefPubMedPubMedCentral El-Shesheny R, Kandeil A, Bagato O, Maatouq AM, Moatasim Y, Rubrum A, et al. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J Gen Virol. 2014;95:1444–63.CrossRefPubMedPubMedCentral
12.
go back to reference Balish AL, Davis CT, Saad MD, El-Sayed N, Esmat H, Tjaden JA, et al. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt. Avian Dis. 2010;54:329–34.CrossRefPubMed Balish AL, Davis CT, Saad MD, El-Sayed N, Esmat H, Tjaden JA, et al. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt. Avian Dis. 2010;54:329–34.CrossRefPubMed
13.
go back to reference Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine. 2011;29:9368–75.CrossRefPubMed Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine. 2011;29:9368–75.CrossRefPubMed
15.
16.
go back to reference Arafa A, Suarez D, Kholosy SG, Hassan MK, Nasef S, Selim A, et al. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation. Arch Virol. 2012;157:1931–47.CrossRefPubMed Arafa A, Suarez D, Kholosy SG, Hassan MK, Nasef S, Selim A, et al. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation. Arch Virol. 2012;157:1931–47.CrossRefPubMed
17.
go back to reference Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Mizuike R, Hiramatsu H, et al. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. PLoS Pathog. 2011;7:19. Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Mizuike R, Hiramatsu H, et al. Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt. PLoS Pathog. 2011;7:19.
18.
go back to reference Xu X, Subbarao K, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9.CrossRefPubMed Xu X, Subbarao K, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9.CrossRefPubMed
20.
go back to reference Earhart KC, Elsayed NM, Saad MD, Gubareva LV, Nayel A, Deyde VM, et al. Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. J Infect Public Health. 2009;2:74–80.CrossRefPubMed Earhart KC, Elsayed NM, Saad MD, Gubareva LV, Nayel A, Deyde VM, et al. Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. J Infect Public Health. 2009;2:74–80.CrossRefPubMed
21.
go back to reference Perovic VR, Muller CP, Niman HL, Veljkovic N, Dietrich U, Tosic DD, et al. Novel Phylogenetic Algorithm to Monitor Human Tropism in Egyptian H5N1-HPAIV Reveals Evolution toward Efficient Human-to-Human Transmission. PLoS One. 2013;8(4):e61572.CrossRefPubMedPubMedCentral Perovic VR, Muller CP, Niman HL, Veljkovic N, Dietrich U, Tosic DD, et al. Novel Phylogenetic Algorithm to Monitor Human Tropism in Egyptian H5N1-HPAIV Reveals Evolution toward Efficient Human-to-Human Transmission. PLoS One. 2013;8(4):e61572.CrossRefPubMedPubMedCentral
22.
go back to reference Hoffmann E, Lipatov AS, Webby RJ, Govorkova EA, Webster RG. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci U S A. 2005;102:12915–20.CrossRefPubMedPubMedCentral Hoffmann E, Lipatov AS, Webby RJ, Govorkova EA, Webster RG. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci U S A. 2005;102:12915–20.CrossRefPubMedPubMedCentral
23.
go back to reference Beato MS, Mancin M, Yang J, Buratin A, Ruffa M, Maniero S, et al. Antigenic characterization of recent H5N1 highly pathogenic avian influenza viruses circulating in Egyptian poultry. Virology. 2013;435:350–6.CrossRefPubMedPubMedCentral Beato MS, Mancin M, Yang J, Buratin A, Ruffa M, Maniero S, et al. Antigenic characterization of recent H5N1 highly pathogenic avian influenza viruses circulating in Egyptian poultry. Virology. 2013;435:350–6.CrossRefPubMedPubMedCentral
24.
go back to reference Cattoli G, Milani A, Temperton N, Zecchin B, Buratin A, Molesti E, et al. Antigenic drift in H5N1 avian influenza in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to human influenza. J Virol. 2011;85(17):8718–24.CrossRefPubMedPubMedCentral Cattoli G, Milani A, Temperton N, Zecchin B, Buratin A, Molesti E, et al. Antigenic drift in H5N1 avian influenza in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to human influenza. J Virol. 2011;85(17):8718–24.CrossRefPubMedPubMedCentral
25.
go back to reference Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Daidoji T, Takagi T, et al. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages cocirculating in Egypt. J Gen Virol. 2012;93:2215–26.CrossRefPubMed Watanabe Y, Ibrahim MS, Ellakany HF, Kawashita N, Daidoji T, Takagi T, et al. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages cocirculating in Egypt. J Gen Virol. 2012;93:2215–26.CrossRefPubMed
26.
go back to reference Ibrahim M, Eladl AF, Sultan HA, Arafa AS, Abdel Razik AG, Abd El Rahman S, et al. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006–2012). Vet Microbiol. 2013;167:651–61.CrossRefPubMed Ibrahim M, Eladl AF, Sultan HA, Arafa AS, Abdel Razik AG, Abd El Rahman S, et al. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006–2012). Vet Microbiol. 2013;167:651–61.CrossRefPubMed
28.
go back to reference Yoon S-W, Kayali G, Ali MA, Webster RG, Webby RJ, Ducatez MF. A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity but not the transmission of Egyptian highly pathogenic H5N1 influenza virus in chickens. J Virol. 2013;87(8):4786–8.CrossRefPubMedPubMedCentral Yoon S-W, Kayali G, Ali MA, Webster RG, Webby RJ, Ducatez MF. A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity but not the transmission of Egyptian highly pathogenic H5N1 influenza virus in chickens. J Virol. 2013;87(8):4786–8.CrossRefPubMedPubMedCentral
29.
go back to reference Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a realtime reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–60.CrossRefPubMedPubMedCentral Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a realtime reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–60.CrossRefPubMedPubMedCentral
30.
go back to reference Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, et al. Validated H5 Eurasian real-time reverse transcriptase– polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007;51:373–7.CrossRefPubMed Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, et al. Validated H5 Eurasian real-time reverse transcriptase– polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007;51:373–7.CrossRefPubMed
32.
go back to reference Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25:1459–71.CrossRefPubMedPubMedCentral Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25:1459–71.CrossRefPubMedPubMedCentral
33.
go back to reference Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710.CrossRef Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710.CrossRef
36.
go back to reference Kosakovsky Pond SL, Frost DWS. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–22.CrossRefPubMed Kosakovsky Pond SL, Frost DWS. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–22.CrossRefPubMed
37.
go back to reference Yang Z, Wong WSW, Nielsen R. Bayes empirical Bayes interference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.CrossRefPubMed Yang Z, Wong WSW, Nielsen R. Bayes empirical Bayes interference of amino acid sites under positive selection. Mol Biol Evol. 2005;22:1107–18.CrossRefPubMed
38.
go back to reference Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis. program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis. program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.
Metadata
Title
Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt
Authors
Abdelsatar Arafa
Ihab El-Masry
Shereen Kholosy
Mohammed K. Hassan
Gwenaelle Dauphin
Juan Lubroth
Yilma J. Makonnen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0477-7

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue