Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Patient-derived hepatitis C virus inhibits CD4+ but not CD8+ T lymphocyte proliferation in primary T cells

Authors: Sonya A. MacParland, Annie Y. Chen, Christopher P. Corkum, Tram N.Q. Pham, Tomasz I. Michalak

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Hepatitis C virus (HCV) can replicate in cells of the immune system and productively propagate in primary T lymphocytes in vitro. We aimed to determine whether exposure to authentic, patient-derived HCV can modify the proliferation capacity, susceptibility to apoptosis and phenotype of T cells.

Methods

Primary total T cells from a healthy donor were used as targets and plasma-derived HCV from patients with chronic hepatitis C served as inocula. T cell phenotype was determined prior to and at different time points after exposure to HCV. T cell proliferation and apoptosis were measured by flow cytometry-based assays.

Results

The HCV inocula that induced the highest intracellular expression of HCV also caused a greatest shift in the T cell phenotype from predominantly CD4-positive to CD8-positive. This shift was associated with inhibition of CD4+ but not CD8+ T cell proliferation and did not coincide with altered apoptotic death of either cell subset.

Conclusions

The data obtained imply that exposure to native HCV can have an impact on the relative frequencies of CD4+ and CD8+ T cells by selectively suppressing CD4+ T lymphocyte proliferation and this may occur in both the presence and the absence of measurable HCV replication in these cells. If the virus exerts a similar effect in vivo, it may contribute to the impairment of virus-specific T cell response by altering cooperation between immune cell subsets.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pham TNQ, MacParland SA, Mulrooney PM, Cooksley H, Naoumov NV, Michalak TI. Hepatitis C virus persistence after spontaneous or treatment-induced resolution of hepatitis C. J Virol. 2004;78:5867–74.PubMedCentralPubMedCrossRef Pham TNQ, MacParland SA, Mulrooney PM, Cooksley H, Naoumov NV, Michalak TI. Hepatitis C virus persistence after spontaneous or treatment-induced resolution of hepatitis C. J Virol. 2004;78:5867–74.PubMedCentralPubMedCrossRef
3.
go back to reference Pal S, Sullivan DG, Kim S, et al. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology. 2006;130:1107–16.PubMedCrossRef Pal S, Sullivan DG, Kim S, et al. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology. 2006;130:1107–16.PubMedCrossRef
4.
go back to reference Kondo Y, Sung VMH, Machida K, Liu MY, Lai MMC. Hepatitis C virus infects T cells and affects interferon-gamma signaling in T cell lines. Virology. 2007;361:161–73.PubMedCrossRef Kondo Y, Sung VMH, Machida K, Liu MY, Lai MMC. Hepatitis C virus infects T cells and affects interferon-gamma signaling in T cell lines. Virology. 2007;361:161–73.PubMedCrossRef
5.
go back to reference Radkowski M, Bednarska A, Horban A, et al. Infection of primary human macrophages with hepatitis C virus in vitro: induction of tumour necrosis factor-alpha and interleukin 8. J Gen Virol. 2004;85:47–59.PubMedCrossRef Radkowski M, Bednarska A, Horban A, et al. Infection of primary human macrophages with hepatitis C virus in vitro: induction of tumour necrosis factor-alpha and interleukin 8. J Gen Virol. 2004;85:47–59.PubMedCrossRef
6.
go back to reference Pham TNQ, King D, MacParland SA, et al. Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection. Gastroenterology. 2008;134:812–22.PubMedCrossRef Pham TNQ, King D, MacParland SA, et al. Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection. Gastroenterology. 2008;134:812–22.PubMedCrossRef
7.
go back to reference MacParland SA, Pham TNQ, Gujar SA, Michalak TI. De novo infection and propagation of wild-type Hepatitis C virus in human T lymphocytes in vitro. J Gen Virol. 2006;87:3577–86.PubMedCrossRef MacParland SA, Pham TNQ, Gujar SA, Michalak TI. De novo infection and propagation of wild-type Hepatitis C virus in human T lymphocytes in vitro. J Gen Virol. 2006;87:3577–86.PubMedCrossRef
8.
go back to reference Sarhan MA, Chen AY, Russell RS, Michalak TI. Patient-derived hepatitis C virus and JFH-1 clones differ in their ability to infect human hepatoma cells and lymphocytes. J Gen Virol. 2012;93:2399–407.PubMedCrossRef Sarhan MA, Chen AY, Russell RS, Michalak TI. Patient-derived hepatitis C virus and JFH-1 clones differ in their ability to infect human hepatoma cells and lymphocytes. J Gen Virol. 2012;93:2399–407.PubMedCrossRef
10.
go back to reference Shoukry NH, Grakoui A, Houghton M, et al. Memory CD8(+) T cells are required for protection from persistent hepatitis C virus infection. J Exp Med. 2003;197:1645–55.PubMedCentralPubMedCrossRef Shoukry NH, Grakoui A, Houghton M, et al. Memory CD8(+) T cells are required for protection from persistent hepatitis C virus infection. J Exp Med. 2003;197:1645–55.PubMedCentralPubMedCrossRef
11.
go back to reference Grakoui A, Shoukry NH, Woollard DJ, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003;302:659–62.PubMedCrossRef Grakoui A, Shoukry NH, Woollard DJ, et al. HCV persistence and immune evasion in the absence of memory T cell help. Science. 2003;302:659–62.PubMedCrossRef
12.
go back to reference Semmo N, Krashias G, Willberg C, Klenerman P. Analysis of the relationship between cytokine secretion and proliferative capacity in hepatitis C virus infection. J Viral Hepat. 2007;14:492–502.PubMedCrossRef Semmo N, Krashias G, Willberg C, Klenerman P. Analysis of the relationship between cytokine secretion and proliferative capacity in hepatitis C virus infection. J Viral Hepat. 2007;14:492–502.PubMedCrossRef
13.
go back to reference Hall CHT, Kassel R, Tacke RS, Hahn YS. HCV+ hepatocytes induce human regulatory CD4(+) T cells through the production of TGF-beta. PLOS ONE. 2010;5:e12154.PubMedCentralPubMedCrossRef Hall CHT, Kassel R, Tacke RS, Hahn YS. HCV+ hepatocytes induce human regulatory CD4(+) T cells through the production of TGF-beta. PLOS ONE. 2010;5:e12154.PubMedCentralPubMedCrossRef
14.
go back to reference Kondo Y, Ueno Y, Kakazu E, et al. Lymphotropic HCV strain can infect human primary naive CD4(+) cells and affect their proliferation and IFN-gamma secretion activity. J Gastroenterol. 2011;46:232–41.PubMedCentralPubMedCrossRef Kondo Y, Ueno Y, Kakazu E, et al. Lymphotropic HCV strain can infect human primary naive CD4(+) cells and affect their proliferation and IFN-gamma secretion activity. J Gastroenterol. 2011;46:232–41.PubMedCentralPubMedCrossRef
15.
go back to reference Gujar SA, Michalak TI. Flow cytometric quantification of T cell proliferation and division kinetics in woodchuck model of hepatitis B. Immunol Invest. 2005;34:215–36.PubMed Gujar SA, Michalak TI. Flow cytometric quantification of T cell proliferation and division kinetics in woodchuck model of hepatitis B. Immunol Invest. 2005;34:215–36.PubMed
16.
go back to reference Gujar SA, Jenkins AK, MacParland SA, Michalak TI. Pre-acute hepadnaviral infection is associated with activation-induced apoptotic death of lymphocytes in the woodchuck (Marmota monax) model of hepatitis B. Dev Comp Immunol. 2010;34:999–1008.PubMedCrossRef Gujar SA, Jenkins AK, MacParland SA, Michalak TI. Pre-acute hepadnaviral infection is associated with activation-induced apoptotic death of lymphocytes in the woodchuck (Marmota monax) model of hepatitis B. Dev Comp Immunol. 2010;34:999–1008.PubMedCrossRef
17.
go back to reference Pham TNQ, Mulrooney-Cousins PM, Mercer SE, et al. Antagonistic expression of hepatitis C virus and alpha interferon in lymphoid cells during persistent occult infection. J Viral Hepat. 2007;14:537–48.PubMedCrossRef Pham TNQ, Mulrooney-Cousins PM, Mercer SE, et al. Antagonistic expression of hepatitis C virus and alpha interferon in lymphoid cells during persistent occult infection. J Viral Hepat. 2007;14:537–48.PubMedCrossRef
19.
go back to reference Kondo Y, Ueno Y, Shimosegawa T. Biological significance of HCV in various kinds of lymphoid cells. Int J Microbiol. 2012;2012:e647581.CrossRef Kondo Y, Ueno Y, Shimosegawa T. Biological significance of HCV in various kinds of lymphoid cells. Int J Microbiol. 2012;2012:e647581.CrossRef
20.
go back to reference MacParland SA, Pham TNQ, Guy CS, Michalak TI. Hepatitis C virus persisting after clinically apparent sustained virological response to antiviral therapy retains infectivity in vitro. Hepatology. 2009;49:1431–41.PubMedCrossRef MacParland SA, Pham TNQ, Guy CS, Michalak TI. Hepatitis C virus persisting after clinically apparent sustained virological response to antiviral therapy retains infectivity in vitro. Hepatology. 2009;49:1431–41.PubMedCrossRef
21.
go back to reference Sarhan MA, Chen AY, Michalak TI. Differential expression of candidate virus receptors in human T lymphocytes prone or resistant to infection with patient-derived hepatitis C virus. PLOS One. 2013;8:e62159.PubMedCentralPubMedCrossRef Sarhan MA, Chen AY, Michalak TI. Differential expression of candidate virus receptors in human T lymphocytes prone or resistant to infection with patient-derived hepatitis C virus. PLOS One. 2013;8:e62159.PubMedCentralPubMedCrossRef
22.
go back to reference Pham TNQ, MacParland SA, Coffin CS, Lee SS, Bursey FR, Michalak TI. Mitogen-induced upregulation of hepatitis C virus expression in human lymphoid cells. J Gen Virol. 2005;86:657–66.PubMedCrossRef Pham TNQ, MacParland SA, Coffin CS, Lee SS, Bursey FR, Michalak TI. Mitogen-induced upregulation of hepatitis C virus expression in human lymphoid cells. J Gen Virol. 2005;86:657–66.PubMedCrossRef
23.
go back to reference Braun RW, Kirchner H. T lymphocytes activated by interleukin 2 alone acquire permissiveness for replication of herpes simplex virus. Eur J Immunol. 1986;16:709–11.PubMedCrossRef Braun RW, Kirchner H. T lymphocytes activated by interleukin 2 alone acquire permissiveness for replication of herpes simplex virus. Eur J Immunol. 1986;16:709–11.PubMedCrossRef
24.
go back to reference Chatterjee R, Gupta P, Kashmiri SV, Ferrer JF. Phytohemagglutinin activation of the transcription of the bovine leukemia virus genome requires de novo protein synthesis. J Virol. 1985;54:860–3.PubMedCentralPubMed Chatterjee R, Gupta P, Kashmiri SV, Ferrer JF. Phytohemagglutinin activation of the transcription of the bovine leukemia virus genome requires de novo protein synthesis. J Virol. 1985;54:860–3.PubMedCentralPubMed
25.
go back to reference Hyypia T, Korkiamaki P, Vainionpaa R. Replication of measles virus in human lymphocytes. J Exp Med. 1985;161:1261–71.PubMedCrossRef Hyypia T, Korkiamaki P, Vainionpaa R. Replication of measles virus in human lymphocytes. J Exp Med. 1985;161:1261–71.PubMedCrossRef
26.
go back to reference Gerlach JT, Diepolder HM, Jung MC, et al. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology. 1999;117:933–41.PubMedCrossRef Gerlach JT, Diepolder HM, Jung MC, et al. Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology. 1999;117:933–41.PubMedCrossRef
27.
go back to reference Semmo N, Day CL, Ward SM, et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology. 2005;41:1019–28.PubMedCrossRef Semmo N, Day CL, Ward SM, et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology. 2005;41:1019–28.PubMedCrossRef
Metadata
Title
Patient-derived hepatitis C virus inhibits CD4+ but not CD8+ T lymphocyte proliferation in primary T cells
Authors
Sonya A. MacParland
Annie Y. Chen
Christopher P. Corkum
Tram N.Q. Pham
Tomasz I. Michalak
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0322-4

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.