Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

ATP synthesis is active on the cell surface of the shrimp Litopenaeus vannamei and is suppressed by WSSV infection

Authors: Yan Liang, Meng-Lin Xu, Xiao-Wen Wang, Xiao-Xiao Gao, Jun-Jun Cheng, Chen Li, Jie Huang

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Over the past a few years, evidences indicate that adenosine triphosphate (ATP) is an energy source for the binding, maturation, assembly, and budding process of many enveloped viruses. Our previous studies suggest that the F1-ATP synthase beta subunit (ATPsyn β, BP53) of the shrimp Litopenaeus vannamei (L. vannamei) might serve as a potential receptor for white spot syndrome virus (WSSV)’s infection.

Methods

BP53 was localized on the surface of shrimp hemocytes and gill epithelial cells by immunofluorescence assay and immunogold labeling technique. Cell surface ATP synthesis was demonstrated by an in vitro bioluminescent luciferase assay. Furthermore, the expression of bp53 after WSSV infection was investigated by RT-PCR test. In addition, RNAi was developed to knock down endogenous bp53.

Results

BP53 is present on shrimp cell surface of hemocytes and gill epithelia. The synthesized ATP was detectable in the extracellular supernatant by using a bioluminescence assay, and the production declined post WSSV binding and infection. Knocking down endogenous bp53 resulted in a 50% mortality of L. vannamei.

Conclusion

These results suggested that BP53, presenting on cell surface, likely served as one of the receptors for WSSV infection in shrimp. Correspondingly, WSSV appears to disturb the host energy metabolism through interacting with host ATPsyn β during infection. This work firstly showed that host ATP production is required and consumed by the WSSV for binding and proceeds with infection process.
Literature
1.
go back to reference Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. Whispovirus. Curr Top Microbiol Immunol. 2009;328:197–227.PubMed Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. Whispovirus. Curr Top Microbiol Immunol. 2009;328:197–227.PubMed
3.
go back to reference Wang H-C, Wang H-C, Leu J-H, Kou G-H, Wang AHJ, Lo C-F. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol. 2007;31:672–86.CrossRefPubMed Wang H-C, Wang H-C, Leu J-H, Kou G-H, Wang AHJ, Lo C-F. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol. 2007;31:672–86.CrossRefPubMed
4.
go back to reference Liang Y, Huang J, Song XL, Zhang PJ, Xu HS. Four viral proteins of white spot syndrome virus (WSSV) that attach to shrimp cell membranes. Dis Aquat Organ. 2005;66:81–5.CrossRefPubMed Liang Y, Huang J, Song XL, Zhang PJ, Xu HS. Four viral proteins of white spot syndrome virus (WSSV) that attach to shrimp cell membranes. Dis Aquat Organ. 2005;66:81–5.CrossRefPubMed
5.
go back to reference Chen LL, Lu LC, Wu WJ, Lo CF, Huang WP. White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Dis Aquat Organ. 2007;74:171–8.CrossRefPubMed Chen LL, Lu LC, Wu WJ, Lo CF, Huang WP. White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Dis Aquat Organ. 2007;74:171–8.CrossRefPubMed
6.
go back to reference Li DF, Zhang MC, Yang HJ, Zhu YB, Xu X. Beta-integrin mediates WSSV infection. Virology. 2007;368:122–32.CrossRefPubMed Li DF, Zhang MC, Yang HJ, Zhu YB, Xu X. Beta-integrin mediates WSSV infection. Virology. 2007;368:122–32.CrossRefPubMed
7.
go back to reference Chen KY, Hsu TC, Huang PY, Kang ST, Lo CF, Huang WP, et al. Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol. 2009;27:460–5.CrossRefPubMed Chen KY, Hsu TC, Huang PY, Kang ST, Lo CF, Huang WP, et al. Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol. 2009;27:460–5.CrossRefPubMed
8.
go back to reference Liang Y, Cheng JJ, Yang B, Huang J. The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp Litopenaeus vannamei. Virol J. 2010;7:144.CrossRefPubMedCentralPubMed Liang Y, Cheng JJ, Yang B, Huang J. The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp Litopenaeus vannamei. Virol J. 2010;7:144.CrossRefPubMedCentralPubMed
9.
go back to reference Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW. PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol. 2006;80:10734–42.CrossRefPubMedCentralPubMed Sritunyalucksana K, Wannapapho W, Lo CF, Flegel TW. PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J Virol. 2006;80:10734–42.CrossRefPubMedCentralPubMed
10.
go back to reference Lin X, Kim YA, Lee BL, Soderhall K, Soderhall I. Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res. 2009;315:1171–80.CrossRefPubMed Lin X, Kim YA, Lee BL, Soderhall K, Soderhall I. Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res. 2009;315:1171–80.CrossRefPubMed
11.
go back to reference Zhan W, Wang X, Chi Y, Tang X. The VP37-binding protein F1ATP synthase β subunit involved in WSSV infection in shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2013;34:228-35. Zhan W, Wang X, Chi Y, Tang X. The VP37-binding protein F1ATP synthase β subunit involved in WSSV infection in shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2013;34:228-35.
12.
go back to reference Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med. 1994;180:273–81.CrossRefPubMed Das B, Mondragon MO, Sadeghian M, Hatcher VB, Norin AJ. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp Med. 1994;180:273–81.CrossRefPubMed
13.
go back to reference Fongsaran C, Jirakanwisal K, Kuadkitkan A, Wikan N, Wintachai P, Thepparit C, et al. Involvement of ATP synthase beta subunit in chikungunya virus entry into insect cells. Arch Virol. 2014;159:3353–64.CrossRefPubMed Fongsaran C, Jirakanwisal K, Kuadkitkan A, Wikan N, Wintachai P, Thepparit C, et al. Involvement of ATP synthase beta subunit in chikungunya virus entry into insect cells. Arch Virol. 2014;159:3353–64.CrossRefPubMed
14.
go back to reference Paingankar MS, Gokhale MD, Deobagkar DN. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol. 2010;155:1453–61.CrossRefPubMed Paingankar MS, Gokhale MD, Deobagkar DN. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol. 2010;155:1453–61.CrossRefPubMed
15.
go back to reference Söderhall I, Bangyeekhun E, Mayo S, Söderhäll K. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev Comp Immunol. 2003;27:661–72.CrossRefPubMed Söderhall I, Bangyeekhun E, Mayo S, Söderhäll K. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Dev Comp Immunol. 2003;27:661–72.CrossRefPubMed
16.
go back to reference Johansson Mats WKP, Sritunyalucksana K, Söderhäll K. Crustacean haemocytes and haematopoiesis. Aquaculture. 2000;191:8. Johansson Mats WKP, Sritunyalucksana K, Söderhäll K. Crustacean haemocytes and haematopoiesis. Aquaculture. 2000;191:8.
17.
go back to reference Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge. Micron. 2007;38:49–57.CrossRefPubMed Giulianini PG, Bierti M, Lorenzon S, Battistella S, Ferrero EA. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge. Micron. 2007;38:49–57.CrossRefPubMed
18.
go back to reference van de Braak CB, Botterblom MH, Liu W, Taverne N, van der Knaap WP, Rombout JH. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol. 2002;12:253–72.CrossRefPubMed van de Braak CB, Botterblom MH, Liu W, Taverne N, van der Knaap WP, Rombout JH. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol. 2002;12:253–72.CrossRefPubMed
19.
go back to reference Liang GF, Liang Y, Cheng JJ, Zhang SC, Huang J. Cloning, full-length sequence analysis and prokaryotic expression of astakine gene of Litopenaeus vannamei. Progress in Fishery Sciences. 2012;33:76–85. Liang GF, Liang Y, Cheng JJ, Zhang SC, Huang J. Cloning, full-length sequence analysis and prokaryotic expression of astakine gene of Litopenaeus vannamei. Progress in Fishery Sciences. 2012;33:76–85.
20.
go back to reference Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedCentralPubMed Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedCentralPubMed
22.
go back to reference Söderhall I, Kim Y-A, Jiravanichpaisal P, Lee S-Y, Söderhall K. An ancient role for a prokineticin domain in invertebrate hematopoiesis. J Immunol. 2005;174:6153–60.CrossRefPubMed Söderhall I, Kim Y-A, Jiravanichpaisal P, Lee S-Y, Söderhall K. An ancient role for a prokineticin domain in invertebrate hematopoiesis. J Immunol. 2005;174:6153–60.CrossRefPubMed
23.
go back to reference Hsiao CY, Song YL. A long form of shrimp astakine transcript: molecular cloning, characterization and functional elucidation in promoting hematopoiesis. Fish Shellfish Immunol. 2010;28:77–86.CrossRefPubMed Hsiao CY, Song YL. A long form of shrimp astakine transcript: molecular cloning, characterization and functional elucidation in promoting hematopoiesis. Fish Shellfish Immunol. 2010;28:77–86.CrossRefPubMed
24.
go back to reference Liang G, Liang Y, Xue Q, Lu J, Cheng J, Huang J. Astakine LvAST binds to the beta subunit of F-ATP synthase and likely plays a role in white shrimp Litopeneaus vannamei defense against white spot syndrome virus. Fish Shellfish Immunol. 2015;43:75–81.CrossRefPubMed Liang G, Liang Y, Xue Q, Lu J, Cheng J, Huang J. Astakine LvAST binds to the beta subunit of F-ATP synthase and likely plays a role in white shrimp Litopeneaus vannamei defense against white spot syndrome virus. Fish Shellfish Immunol. 2015;43:75–81.CrossRefPubMed
25.
go back to reference Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, et al. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol. 2011;85:12919–28.CrossRefPubMedCentralPubMed Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, et al. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. J Virol. 2011;85:12919–28.CrossRefPubMedCentralPubMed
26.
go back to reference Xie X, Li H, Xu L, Yang F. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res. 2005;108:63–7.CrossRefPubMed Xie X, Li H, Xu L, Yang F. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res. 2005;108:63–7.CrossRefPubMed
27.
go back to reference Zhou Q, Qi Y-P, Yang F. Application of spectrophotometry to evaluate the concentration of purified white spot syndrome virus. J Virol Methods. 2007;146:288–92.CrossRefPubMed Zhou Q, Qi Y-P, Yang F. Application of spectrophotometry to evaluate the concentration of purified white spot syndrome virus. J Virol Methods. 2007;146:288–92.CrossRefPubMed
28.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed
29.
go back to reference Saksmerprome V, Charoonnart P, Gangnonngiw W, Withyachumnarnkul B. A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. J Virol Methods. 2009;162:213–7.CrossRefPubMed Saksmerprome V, Charoonnart P, Gangnonngiw W, Withyachumnarnkul B. A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. J Virol Methods. 2009;162:213–7.CrossRefPubMed
30.
go back to reference Söderhall K, Smith VJ. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol. 1983;7:229–39.CrossRefPubMed Söderhall K, Smith VJ. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol. 1983;7:229–39.CrossRefPubMed
Metadata
Title
ATP synthesis is active on the cell surface of the shrimp Litopenaeus vannamei and is suppressed by WSSV infection
Authors
Yan Liang
Meng-Lin Xu
Xiao-Wen Wang
Xiao-Xiao Gao
Jun-Jun Cheng
Chen Li
Jie Huang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0275-7

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue