Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

01-12-2020 | Research

Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial

Authors: Shihomi Kawasaki, Koji Ohata, Takeshi Yoshida, Atsushi Yokoyama, Shigehito Yamada

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Abstract

Background

Recently, rehabilitation robots are expected to improve the gait of cerebral palsy (CP) children. However, only few previous studies have reported the kinematic and kinetic changes by using wearable exoskeleton robots. The aim of this study was to investigate the change in gait parameters in CP children by training with the wearable robot-assisted gait training.

Methods

10 spastic CP children with Gross Motor Function Classification Scale levels I-III completed a sham-controlled crossover randomized trial. Robot-assisted gait training (RAGT) and non-assisted gait training (NAGT) were performed on the treadmill with the Honda Walking Assist (HWA) in two different days. To examine the carry-over effect from treadmill walking to overground walking, participants also performed 5.5 m overground-walks without the HWA before and after treadmill training (pre- and post-trial). During treadmill walking, peak of both hip and knee angles were measured. Also, we calculated the limb symmetry of hip range of motion. In addition, gait speed and ground reaction force were measured in overground trials.

Results

The maximum hip angle on the limb with fewer hip movements, which was defined as the affected limb, showed a significant interaction between ASSIST (RAGT and NAGT) and TIME (pre- and post-trial) (p < 0.05). Limb symmetry significantly improved after RAGT (p < 0.05), but not in NAGT. Furthermore, the affected limb showed a significant increase in the positive peak of the anterior-posterior ground reaction force during 70–100% of the gait cycle (p < 0.05). However, there was no change in gait speed.

Conclusion

By assisting the both hip movements with the HWA, maximum hip flexion and extension angle of the affected limb improved. Also, limb symmetry and propulsion force of the affected limb improved. Our results suggest that assisting both hip movements with the HWA might be an effective method for improving gait in CP children.
Literature
1.
go back to reference Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed
2.
go back to reference Rodda JM, et al. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Nerol. 2001;8(Suppl 5):98–108.. Rodda JM, et al. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Nerol. 2001;8(Suppl 5):98–108..
3.
go back to reference Sullivan E, Barnes D, Linton JL, Calmes J, Damiano D, Oeffinger D, et al. Relationships among functional outcome measures used for assessing children with ambulatory CP. Dev Med Child Neurol. 2007;49(5):338–44.CrossRef Sullivan E, Barnes D, Linton JL, Calmes J, Damiano D, Oeffinger D, et al. Relationships among functional outcome measures used for assessing children with ambulatory CP. Dev Med Child Neurol. 2007;49(5):338–44.CrossRef
4.
go back to reference Murphy KP, Molnar GE, Lankasky K. Medical and functional status of adults with cerebral palsy. Dev Med Child Neurol. 1995;37(12):1075–84.CrossRef Murphy KP, Molnar GE, Lankasky K. Medical and functional status of adults with cerebral palsy. Dev Med Child Neurol. 1995;37(12):1075–84.CrossRef
5.
go back to reference Carvalho I, Printo SM, Chagas DDV. Praxedes dos Santos JL, de Sousa Oliveira T, Batista LA. Robotic gait training for individuals with cerebral palsy : a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98(11):2332–44.CrossRef Carvalho I, Printo SM, Chagas DDV. Praxedes dos Santos JL, de Sousa Oliveira T, Batista LA. Robotic gait training for individuals with cerebral palsy : a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98(11):2332–44.CrossRef
7.
go back to reference Kitatani R, Ohata K, Takahashi H, Shibuta S, Hashiguchi Y, Yamakami N. Reduction in energy expenditure during walking using an automated stride assistance device in healthy young adults. Arch Phys Med Rehabil. 2014;95(11):2128–33.CrossRef Kitatani R, Ohata K, Takahashi H, Shibuta S, Hashiguchi Y, Yamakami N. Reduction in energy expenditure during walking using an automated stride assistance device in healthy young adults. Arch Phys Med Rehabil. 2014;95(11):2128–33.CrossRef
8.
go back to reference Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA ®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2015;12:69.CrossRef Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA ®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2015;12:69.CrossRef
9.
go back to reference Tanaka N, Matsushita S, Sonoda Y, Maruta Y, Fujitaka Y, Sato M, et al. Effect of stride management assist gait training for Poststroke hemiplegia: a single center, open-label, randomized controlled trial. J Stroke Cerebrovasc Dis. 2019;28(2):477–86.CrossRef Tanaka N, Matsushita S, Sonoda Y, Maruta Y, Fujitaka Y, Sato M, et al. Effect of stride management assist gait training for Poststroke hemiplegia: a single center, open-label, randomized controlled trial. J Stroke Cerebrovasc Dis. 2019;28(2):477–86.CrossRef
10.
go back to reference Jayaraman A, O’Brien MK, Medhavan S, Mummidisetty CK, Roth HR, Hohl K, et al. Stride management assist exoskeleton vs functional gait training in stroke: a randomized trial. Neurology. 2019;92(3):e263–73.CrossRef Jayaraman A, O’Brien MK, Medhavan S, Mummidisetty CK, Roth HR, Hohl K, et al. Stride management assist exoskeleton vs functional gait training in stroke: a randomized trial. Neurology. 2019;92(3):e263–73.CrossRef
11.
go back to reference Hargittai S. Savitzky-Golay least-squares polynomial filters in ECG signal processing. IEEE Comput. Cardiol. 2005;32:763b–6. Hargittai S. Savitzky-Golay least-squares polynomial filters in ECG signal processing. IEEE Comput. Cardiol. 2005;32:763b–6.
12.
go back to reference Lesinski M, Muehlbauer T, Granacher U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci Med Rehabil. 2016;8:35 eCollection 2016.CrossRef Lesinski M, Muehlbauer T, Granacher U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci Med Rehabil. 2016;8:35 eCollection 2016.CrossRef
13.
go back to reference Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol. 2005;94(4):2403–15.CrossRef Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol. 2005;94(4):2403–15.CrossRef
14.
go back to reference Damiano DL, Arnold AS, Steele KM, Delp SL. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys Ther. 2010;90(2):269–79.CrossRef Damiano DL, Arnold AS, Steele KM, Delp SL. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys Ther. 2010;90(2):269–79.CrossRef
15.
go back to reference Mattern-Baxter K. Effects of partial body weight supported treadmill training on children with cerebral palsy. Pediatr Phys Ther. 2009;21(1):12–22.CrossRef Mattern-Baxter K. Effects of partial body weight supported treadmill training on children with cerebral palsy. Pediatr Phys Ther. 2009;21(1):12–22.CrossRef
16.
go back to reference Winter DA. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop Relat Res. 1983;175:147–54. Winter DA. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop Relat Res. 1983;175:147–54.
17.
go back to reference Meinders M, Gitter A, Czerniecki JM. The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med. 1998;30(1):39–46.CrossRef Meinders M, Gitter A, Czerniecki JM. The role of ankle plantar flexor muscle work during walking. Scand J Rehabil Med. 1998;30(1):39–46.CrossRef
18.
go back to reference Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and wing initiation during walking. J Biomech. 2001;34(11):1387–98.CrossRef Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and wing initiation during walking. J Biomech. 2001;34(11):1387–98.CrossRef
19.
go back to reference Peterson CL, Cheng J, Kautz SA, Neptune RR. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010;32(4):451–6.CrossRef Peterson CL, Cheng J, Kautz SA, Neptune RR. Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture. 2010;32(4):451–6.CrossRef
20.
go back to reference Olney SJ, MacPhail HE, Hedden DM, Boyce WF. Work and power in hemiplegic cerebral palsy gait. Phys Ther. 1990;70(7):431–8.CrossRef Olney SJ, MacPhail HE, Hedden DM, Boyce WF. Work and power in hemiplegic cerebral palsy gait. Phys Ther. 1990;70(7):431–8.CrossRef
21.
go back to reference Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37:872–6.CrossRef Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37:872–6.CrossRef
Metadata
Title
Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial
Authors
Shihomi Kawasaki
Koji Ohata
Takeshi Yoshida
Atsushi Yokoyama
Shigehito Yamada
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00712-3

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue