Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Research

Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees

Authors: Matthieu Guemann, Sandra Bouvier, Christophe Halgand, Florent Paclet, Leo Borrini, Damien Ricard, Eric Lapeyre, Daniel Cattaert, Aymar de Rugy

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated.

Method

We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found.

Results

Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors’ activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement.

Discussion

These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.
Literature
2.
go back to reference Štrbac M, Isaković M, Belić M, Popović I, Simanic I, Farina D, Keller T, Dosen S. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans Neural Syst Rehabil Eng. 2017; 4320:1. Štrbac M, Isaković M, Belić M, Popović I, Simanic I, Farina D, Keller T, Dosen S. Short-and long-term learning of feedforward control of a myoelectric prosthesis with sensory feedback by amputees. IEEE Trans Neural Syst Rehabil Eng. 2017; 4320:1.
4.
go back to reference Witteveen HJ, Luft F, Rietman JS, Veltink PH. Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(1):53–61.CrossRef Witteveen HJ, Luft F, Rietman JS, Veltink PH. Stiffness feedback for myoelectric forearm prostheses using vibrotactile stimulation. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(1):53–61.CrossRef
6.
go back to reference Wilson G, Carter T, Subramanian S, Brewster SA. Perception of ultrasonic haptic feedback on the hand: localisation and apparent motion. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems. ACM: 2014. p. 1133–1142. https://doi.org/10.1145/2556288.2557033. Wilson G, Carter T, Subramanian S, Brewster SA. Perception of ultrasonic haptic feedback on the hand: localisation and apparent motion. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems. ACM: 2014. p. 1133–1142. https://​doi.​org/​10.​1145/​2556288.​2557033.
7.
go back to reference Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013; 10(1):45–54.CrossRef Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013; 10(1):45–54.CrossRef
11.
go back to reference Germany EI, Pino EJ, Aqueveque PE. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3d printed prosthetic hand. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of The. IEEE: 2016. p. 5046–50. https://doi.org/10.1109/embc.2016.7591861. Germany EI, Pino EJ, Aqueveque PE. Myoelectric intuitive control and transcutaneous electrical stimulation of the forearm for vibrotactile sensation feedback applied to a 3d printed prosthetic hand. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of The. IEEE: 2016. p. 5046–50. https://​doi.​org/​10.​1109/​embc.​2016.​7591861.
12.
go back to reference D’Alonzo M, Dosen S., Cipriani C., Farina D.Hyve–hybrid vibro-electrotactile stimulation–is an efficient approach to multi-channel sensory feedback. IEEE Trans Haptics. 2014; 7(2):181–90.CrossRef D’Alonzo M, Dosen S., Cipriani C., Farina D.Hyve–hybrid vibro-electrotactile stimulation–is an efficient approach to multi-channel sensory feedback. IEEE Trans Haptics. 2014; 7(2):181–90.CrossRef
13.
go back to reference Peerdeman B, Boere D, Witteveen H, Hermens H, Stramigioli S, Rietman H, Veltink P, Misra S, et al.Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev. 2011; 48(6). Peerdeman B, Boere D, Witteveen H, Hermens H, Stramigioli S, Rietman H, Veltink P, Misra S, et al.Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev. 2011; 48(6).
14.
go back to reference Scott R, Brittain R, Caldwell R, Cameron A, Dunfield V. Sensory-feedback system compatible with myoelectric control. Med Biol Eng Comput. 1980; 18(1):65–9.CrossRef Scott R, Brittain R, Caldwell R, Cameron A, Dunfield V. Sensory-feedback system compatible with myoelectric control. Med Biol Eng Comput. 1980; 18(1):65–9.CrossRef
17.
go back to reference Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(4):468–72.CrossRef Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(4):468–72.CrossRef
18.
go back to reference Lundborg G, Rosen B, Lindström K, Lindberg S. Artificial sensibility based on the use of piezoresistive sensors: preliminary observations. J Hand Surg. 1998; 23(5):620–6.CrossRef Lundborg G, Rosen B, Lindström K, Lindberg S. Artificial sensibility based on the use of piezoresistive sensors: preliminary observations. J Hand Surg. 1998; 23(5):620–6.CrossRef
19.
go back to reference Antfolk C, Björkman A, Frank S-O, Sebelius F, Lundborg G, Rosen B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J Rehabil Med. 2012; 44(8):702–7.CrossRef Antfolk C, Björkman A, Frank S-O, Sebelius F, Lundborg G, Rosen B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J Rehabil Med. 2012; 44(8):702–7.CrossRef
20.
go back to reference BACH-Y-RITA P. Tactile sensory substitution studies. Ann N Y Acad Sci. 2004; 1013(1):83–91.CrossRef BACH-Y-RITA P. Tactile sensory substitution studies. Ann N Y Acad Sci. 2004; 1013(1):83–91.CrossRef
22.
go back to reference Horch K, Tuckett R, Burgess P. A key to the classification of cutaneous mechanoreceptors. J Investig Dermatol. 1977; 69(1). Horch K, Tuckett R, Burgess P. A key to the classification of cutaneous mechanoreceptors. J Investig Dermatol. 1977; 69(1).
23.
go back to reference Witteveen HJ, Droog EA, Rietman JS, Veltink PH. Vibro-and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012; 59(8):2219–26.CrossRef Witteveen HJ, Droog EA, Rietman JS, Veltink PH. Vibro-and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012; 59(8):2219–26.CrossRef
26.
go back to reference Cipriani C, D’Alonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans Biomed Eng. 2012; 59(2):400–8.CrossRef Cipriani C, D’Alonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans Biomed Eng. 2012; 59(2):400–8.CrossRef
32.
go back to reference Raveh E, Friedman J, Portnoy S. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assist Technol. 2017; 30(5):274–80.CrossRef Raveh E, Friedman J, Portnoy S. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Assist Technol. 2017; 30(5):274–80.CrossRef
34.
go back to reference Stevens JC, Choo KK. Spatial acuity of the body surface over the life span. Somatosens Mot Res. 1996; 13(2):153–66.CrossRef Stevens JC, Choo KK. Spatial acuity of the body surface over the life span. Somatosens Mot Res. 1996; 13(2):153–66.CrossRef
37.
go back to reference Kaaresoja T, Linjama J. Perception of short tactile pulses generated by a vibration motor in a mobile phone. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint. IEEE: 2005. p. 471–472. https://doi.org/10.1109/whc.2005.103. Kaaresoja T, Linjama J. Perception of short tactile pulses generated by a vibration motor in a mobile phone. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint. IEEE: 2005. p. 471–472. https://​doi.​org/​10.​1109/​whc.​2005.​103.
38.
go back to reference Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991; 38(1):1–16.CrossRef Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng. 1991; 38(1):1–16.CrossRef
40.
go back to reference Myles K, Binseel MS. The tactile modality: a review of tactile sensitivity and human tactile interfaces. 2007. Technical report, ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING DIRECTORATE. Myles K, Binseel MS. The tactile modality: a review of tactile sensitivity and human tactile interfaces. 2007. Technical report, ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING DIRECTORATE.
42.
go back to reference Dosen S, Markovic M, Strbac M, Kojić V, Bijelić G, Keller T, Farina D, et al.Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Trans Neural Syst Rehabil Eng. 2017; 25(3):183–95. https://doi.org/10.1109/TNSRE.2016.2550864. Dosen S, Markovic M, Strbac M, Kojić V, Bijelić G, Keller T, Farina D, et al.Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Trans Neural Syst Rehabil Eng. 2017; 25(3):183–95. https://​doi.​org/​10.​1109/​TNSRE.​2016.​2550864.
43.
go back to reference Krueger AR, Giannoni P, Shah V, Casadio M, Scheidt RA. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings. J Neuroengineering Rehabil. 2017; 14(1):36. https://doi.org/10.1186/s12984-017-0248-8. Krueger AR, Giannoni P, Shah V, Casadio M, Scheidt RA. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings. J Neuroengineering Rehabil. 2017; 14(1):36. https://​doi.​org/​10.​1186/​s12984-017-0248-8.
44.
go back to reference Stronks HC, Walker J, Parker DJ, Barnes N. Training improves vibrotactile spatial acuity and intensity discrimination on the lower back using coin motors, vibrotactile spatial acuity and intensity discrimination. Artif Organs. 2017; 41(11):1059–70. https://doi.org/10.1111/aor.12882. Stronks HC, Walker J, Parker DJ, Barnes N. Training improves vibrotactile spatial acuity and intensity discrimination on the lower back using coin motors, vibrotactile spatial acuity and intensity discrimination. Artif Organs. 2017; 41(11):1059–70. https://​doi.​org/​10.​1111/​aor.​12882.
45.
go back to reference Woodward KL, Kenshalo DR, Oliff GK. A tactile stimulation device for measuring two-point and gap discrimination thresholds in humans. Behav Res Methods Instrum Comput. 1990; 22(5):440–2.CrossRef Woodward KL, Kenshalo DR, Oliff GK. A tactile stimulation device for measuring two-point and gap discrimination thresholds in humans. Behav Res Methods Instrum Comput. 1990; 22(5):440–2.CrossRef
46.
go back to reference Giacomoni P. U., Mammone T., Teri M.Gender-linked differences in human skin. J Dermatol Sci. 2009; 55(3):144–9.CrossRef Giacomoni P. U., Mammone T., Teri M.Gender-linked differences in human skin. J Dermatol Sci. 2009; 55(3):144–9.CrossRef
47.
go back to reference Pena AE, Rincon-Gonzalez L, Abbas JJ, Jung R. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. PloS one. 2019; 14(1):0210956.CrossRef Pena AE, Rincon-Gonzalez L, Abbas JJ, Jung R. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. PloS one. 2019; 14(1):0210956.CrossRef
48.
go back to reference Shannon G. A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med Biol Eng. 1976; 14(3):289–94.CrossRef Shannon G. A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med Biol Eng. 1976; 14(3):289–94.CrossRef
53.
go back to reference Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil. 2005; 86(10):1910–19.CrossRef Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil. 2005; 86(10):1910–19.CrossRef
57.
go back to reference Dietrich C, Walter-Walsh K, Preißler S, Hofmann GO, Witte OW, Miltner WH, Weiss T. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012; 507(2):97–100.CrossRef Dietrich C, Walter-Walsh K, Preißler S, Hofmann GO, Witte OW, Miltner WH, Weiss T. Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci Lett. 2012; 507(2):97–100.CrossRef
58.
go back to reference Batsford S, Ryan CG, Martin DJ. Non-pharmacological conservative therapy for phantom limb pain: A systematic review of randomized controlled trials. Physiother Theory Pract. 2017; 33(3):173–83.CrossRef Batsford S, Ryan CG, Martin DJ. Non-pharmacological conservative therapy for phantom limb pain: A systematic review of randomized controlled trials. Physiother Theory Pract. 2017; 33(3):173–83.CrossRef
Metadata
Title
Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees
Authors
Matthieu Guemann
Sandra Bouvier
Christophe Halgand
Florent Paclet
Leo Borrini
Damien Ricard
Eric Lapeyre
Daniel Cattaert
Aymar de Rugy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0597-6

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue