Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2011

Open Access 01-12-2011 | Research

The role of feed-forward and feedback processes for closed-loop prosthesis control

Authors: Ian Saunders, Sethu Vijayakumar

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2011

Login to get access

Abstract

Background

It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control.

Methods

Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i) in ideal conditions, (ii) under sensory deprivation, and (iii) under feed-forward uncertainty.

Results

(i) We found that subjects formed economical grasps in ideal conditions. (ii) To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii) When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present.

Conclusions

We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shannon GF: A myoelectrically-controlled prosthesis with sensory feedback. Med Biol Eng Comput 1979, 17: 73-80. 10.1007/BF02440956CrossRefPubMed Shannon GF: A myoelectrically-controlled prosthesis with sensory feedback. Med Biol Eng Comput 1979, 17: 73-80. 10.1007/BF02440956CrossRefPubMed
2.
go back to reference Scott RN, Brittain RH, Caldwell RR, Cameron AB, Dunfield VA: Sensory-feedback system compatible with myoelectric control. Med Biol Eng Comput 1980, 18: 65-69. 10.1007/BF02442481CrossRefPubMed Scott RN, Brittain RH, Caldwell RR, Cameron AB, Dunfield VA: Sensory-feedback system compatible with myoelectric control. Med Biol Eng Comput 1980, 18: 65-69. 10.1007/BF02442481CrossRefPubMed
3.
go back to reference Riso RR, Ignagni AR, Keith MW: Cognitive feedback for use with FES upper extremity neuroprostheses. IEEE Trans Biomed Eng 1991, 38: 29-38. 10.1109/10.68206CrossRefPubMed Riso RR, Ignagni AR, Keith MW: Cognitive feedback for use with FES upper extremity neuroprostheses. IEEE Trans Biomed Eng 1991, 38: 29-38. 10.1109/10.68206CrossRefPubMed
4.
go back to reference Edin BB, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza MC: Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 2008,75(6):785-795. 10.1016/j.brainresbull.2008.01.017CrossRefPubMed Edin BB, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza MC: Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 2008,75(6):785-795. 10.1016/j.brainresbull.2008.01.017CrossRefPubMed
5.
go back to reference Ascari L, Bertocchi U, Corradi P, Laschi C, Dario P: Bio-inspired grasp control in a robotic hand with massive sensorial input. Biological cybernetics 2009,100(2):109-128. 10.1007/s00422-008-0279-0CrossRefPubMed Ascari L, Bertocchi U, Corradi P, Laschi C, Dario P: Bio-inspired grasp control in a robotic hand with massive sensorial input. Biological cybernetics 2009,100(2):109-128. 10.1007/s00422-008-0279-0CrossRefPubMed
6.
go back to reference Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004,28(3):245-253.PubMed Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004,28(3):245-253.PubMed
7.
go back to reference Dhillon GS, Horch KW: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 2005,13(4):468-472. 10.1109/TNSRE.2005.856072CrossRefPubMed Dhillon GS, Horch KW: Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 2005,13(4):468-472. 10.1109/TNSRE.2005.856072CrossRefPubMed
8.
go back to reference Miller LA, Lipschutz RD, Stubblefield KA, Lock BA, Huang H, Williams TW, Weir RF, Kuiken TA: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008,89(11):2057-2065. 10.1016/j.apmr.2008.05.016PubMedCentralCrossRefPubMed Miller LA, Lipschutz RD, Stubblefield KA, Lock BA, Huang H, Williams TW, Weir RF, Kuiken TA: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008,89(11):2057-2065. 10.1016/j.apmr.2008.05.016PubMedCentralCrossRefPubMed
9.
go back to reference Zhou P, Lowery MM, Englehart KB, Huang H, Li G, Hargrove L, Dewald JPA, Kuiken TA: Decoding a new neural machine interface for control of artificial limbs. J Neurophysiol 2007,98(5):2974-2982. 10.1152/jn.00178.2007CrossRefPubMed Zhou P, Lowery MM, Englehart KB, Huang H, Li G, Hargrove L, Dewald JPA, Kuiken TA: Decoding a new neural machine interface for control of artificial limbs. J Neurophysiol 2007,98(5):2974-2982. 10.1152/jn.00178.2007CrossRefPubMed
10.
go back to reference Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C: Design of a cybernetic hand for perception and action. Biol Cybern 2006,95(6):629-644. 10.1007/s00422-006-0124-2PubMedCentralCrossRefPubMed Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C: Design of a cybernetic hand for perception and action. Biol Cybern 2006,95(6):629-644. 10.1007/s00422-006-0124-2PubMedCentralCrossRefPubMed
11.
go back to reference Iyengar V, Santos MJ, Ko M, Aruin AS: Grip force control in individuals with multiple sclerosis. Neurorehabil Neural Repair 2009,23(8):855-861. 10.1177/1545968309338194CrossRefPubMed Iyengar V, Santos MJ, Ko M, Aruin AS: Grip force control in individuals with multiple sclerosis. Neurorehabil Neural Repair 2009,23(8):855-861. 10.1177/1545968309338194CrossRefPubMed
12.
go back to reference Jiang L, Cutkosky MR, Ruutiainen J, Raisamo R: Using Haptic Feedback to Improve Grasp Force Control in Multiple Sclerosis Patients. IEEE Transactions on Robotics 2009,25(3):593-601.CrossRef Jiang L, Cutkosky MR, Ruutiainen J, Raisamo R: Using Haptic Feedback to Improve Grasp Force Control in Multiple Sclerosis Patients. IEEE Transactions on Robotics 2009,25(3):593-601.CrossRef
13.
go back to reference Cipriani C, Antfolk C, Balkenius C, Ros'en B, Lundborg G, Carrozza MC, Sebelius F: A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng 2009,56(11 Pt 2):2739-2743.CrossRefPubMed Cipriani C, Antfolk C, Balkenius C, Ros'en B, Lundborg G, Carrozza MC, Sebelius F: A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng 2009,56(11 Pt 2):2739-2743.CrossRefPubMed
14.
go back to reference Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS: Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng 2009,17(6):560-567.CrossRefPubMed Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS: Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng 2009,17(6):560-567.CrossRefPubMed
15.
go back to reference Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA: Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 2011. Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA: Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 2011.
16.
go back to reference Zafar M, Doren CLV: Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput 2000,38(3):267-274. 10.1007/BF02347046CrossRefPubMed Zafar M, Doren CLV: Effectiveness of supplemental grasp-force feedback in the presence of vision. Med Biol Eng Comput 2000,38(3):267-274. 10.1007/BF02347046CrossRefPubMed
17.
go back to reference Jordan MI, Wolpert DM: Computational Motor Control. The Cognitive Neurosciences 1999., 601: Jordan MI, Wolpert DM: Computational Motor Control. The Cognitive Neurosciences 1999., 601:
18.
go back to reference Hermsdörfer J, Elias Z, Cole JD, Quaney BM, Nowak DA: Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 2008,22(4):374-384.CrossRefPubMed Hermsdörfer J, Elias Z, Cole JD, Quaney BM, Nowak DA: Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 2008,22(4):374-384.CrossRefPubMed
19.
go back to reference Flanagan JR, Wing AM: The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 1997,17(4):1519-1528.PubMed Flanagan JR, Wing AM: The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 1997,17(4):1519-1528.PubMed
20.
go back to reference Augurelle AS, Smith AM, Lejeune T, Thonnard JL: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 2003,89(2):665-671.CrossRefPubMed Augurelle AS, Smith AM, Lejeune T, Thonnard JL: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 2003,89(2):665-671.CrossRefPubMed
21.
go back to reference Hermsdörfer J, Hagl E, Nowak DA: Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci 2004,23(5):643-662. 10.1016/j.humov.2004.10.005CrossRefPubMed Hermsdörfer J, Hagl E, Nowak DA: Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci 2004,23(5):643-662. 10.1016/j.humov.2004.10.005CrossRefPubMed
22.
go back to reference Johansson RS, Westling G: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 1984,56(3):550-564.CrossRefPubMed Johansson RS, Westling G: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 1984,56(3):550-564.CrossRefPubMed
23.
go back to reference Otr OVDNV, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK: The i-LIMB hand and the DMC plus hand compared: a case report. Prosthetics and orthotics international 2010,34(2):216-220. 10.3109/03093641003767207CrossRefPubMed Otr OVDNV, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK: The i-LIMB hand and the DMC plus hand compared: a case report. Prosthetics and orthotics international 2010,34(2):216-220. 10.3109/03093641003767207CrossRefPubMed
24.
go back to reference Humbert SD, Snyder SA, Grill WM: Evaluation of command algorithms for control of upper-extremity neural prostheses. IEEE Trans Neural Syst Rehabil Eng 2002,10(2):94-101. 10.1109/TNSRE.2002.1031977CrossRefPubMed Humbert SD, Snyder SA, Grill WM: Evaluation of command algorithms for control of upper-extremity neural prostheses. IEEE Trans Neural Syst Rehabil Eng 2002,10(2):94-101. 10.1109/TNSRE.2002.1031977CrossRefPubMed
25.
go back to reference Westling G, Johansson RS: Factors influencing the force control during precision grip. Exp Brain Res 1984,53(2):277-284.CrossRefPubMed Westling G, Johansson RS: Factors influencing the force control during precision grip. Exp Brain Res 1984,53(2):277-284.CrossRefPubMed
26.
go back to reference Chatterjee A, Chaubey P, Martin J, Thakor NV: Quantifying Prosthesis Control Improvements Using a Vibrotactile Representation of Grip Force. Proc IEEE Region 5 Conference 2008, 1-5. Chatterjee A, Chaubey P, Martin J, Thakor NV: Quantifying Prosthesis Control Improvements Using a Vibrotactile Representation of Grip Force. Proc IEEE Region 5 Conference 2008, 1-5.
27.
go back to reference Patterson PE, Katz JA: Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev 1992, 29: 1-8.CrossRefPubMed Patterson PE, Katz JA: Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev 1992, 29: 1-8.CrossRefPubMed
28.
go back to reference Kaczmarek KA, Webster JG, Bach-y Rita P, Tompkins WJ: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering 1991, 38: 1-16. 10.1109/10.68204CrossRefPubMed Kaczmarek KA, Webster JG, Bach-y Rita P, Tompkins WJ: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering 1991, 38: 1-16. 10.1109/10.68204CrossRefPubMed
29.
go back to reference Alahakone AU, Senanayake SMNA: Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. Proc IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2009 2009, 1148-1153.CrossRef Alahakone AU, Senanayake SMNA: Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. Proc IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2009 2009, 1148-1153.CrossRef
30.
go back to reference Cholewiak RW, Collins AA: The generation of vibrotactile patterns on a linear array: influences of body site, time, and presentation mode. Percept Psychophys 2000,62(6):1220-1235. 10.3758/BF03212124CrossRefPubMed Cholewiak RW, Collins AA: The generation of vibrotactile patterns on a linear array: influences of body site, time, and presentation mode. Percept Psychophys 2000,62(6):1220-1235. 10.3758/BF03212124CrossRefPubMed
31.
go back to reference Kennedy JS, Buehner MJ, Rushton SK: Adaptation to sensory-motor temporal misalignment: instrumental or perceptual learning? Q J Exp Psychol (Colchester) 2009,62(3):453-469. 10.1080/17470210801985235CrossRef Kennedy JS, Buehner MJ, Rushton SK: Adaptation to sensory-motor temporal misalignment: instrumental or perceptual learning? Q J Exp Psychol (Colchester) 2009,62(3):453-469. 10.1080/17470210801985235CrossRef
32.
33.
go back to reference Duchêne J, Goubel F: Surface electromyogram during voluntary contraction: processing tools and relation to physiological events. Crit Rev Biomed Eng 1993,21(4):313-397.PubMed Duchêne J, Goubel F: Surface electromyogram during voluntary contraction: processing tools and relation to physiological events. Crit Rev Biomed Eng 1993,21(4):313-397.PubMed
34.
go back to reference Lorrain T, Jiang N, Farina D: Surface EMG classification during dynamic contractions for multifunction transradial prostheses. Conf Proc IEEE Eng Med Biol Soc 2010, 1: 2766-2769. Lorrain T, Jiang N, Farina D: Surface EMG classification during dynamic contractions for multifunction transradial prostheses. Conf Proc IEEE Eng Med Biol Soc 2010, 1: 2766-2769.
35.
go back to reference Cincotti F, Kauhanen L, Aloise F, Palomäki T, Caporusso N, Jylänki P, Mattia D, Babiloni F, Vanacker G, Nuttin M, Marciani MG, Millán JDR: Vibrotactile feedback for brain-computer interface operation. Comput Intell Neurosci 2007, 48937. Cincotti F, Kauhanen L, Aloise F, Palomäki T, Caporusso N, Jylänki P, Mattia D, Babiloni F, Vanacker G, Nuttin M, Marciani MG, Millán JDR: Vibrotactile feedback for brain-computer interface operation. Comput Intell Neurosci 2007, 48937.
36.
go back to reference Engeberg ED, Meek S: Improved Grasp Group Force Sensitivity for Prosthetic Hands Through Force Derivative Feedback. IEEE transactions on bio-medical engineering 2008. Engeberg ED, Meek S: Improved Grasp Group Force Sensitivity for Prosthetic Hands Through Force Derivative Feedback. IEEE transactions on bio-medical engineering 2008.
37.
go back to reference Dosen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, Popović DB: Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. Journal of neuroengineering and rehabilitation 2010, 7: 42+. 10.1186/1743-0003-7-42PubMedCentralCrossRefPubMed Dosen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, Popović DB: Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. Journal of neuroengineering and rehabilitation 2010, 7: 42+. 10.1186/1743-0003-7-42PubMedCentralCrossRefPubMed
Metadata
Title
The role of feed-forward and feedback processes for closed-loop prosthesis control
Authors
Ian Saunders
Sethu Vijayakumar
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2011
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-8-60

Other articles of this Issue 1/2011

Journal of NeuroEngineering and Rehabilitation 1/2011 Go to the issue